• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 334
  • 61
  • 10
  • Tagged with
  • 406
  • 90
  • 78
  • 42
  • 37
  • 29
  • 26
  • 25
  • 24
  • 21
  • 21
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Triple Fortification of Salt with Vitamin A, Self-emulsifying Drug Delivery System, Iron, and Iodine

Kwan, Lana 23 July 2012 (has links)
Triple fortification of salt with vitamin A, iron, and iodine has been investigated in the past to reduce micronutrient deficiencies in the developing world. The objective is to develop integrated nutrient delivery technology by microencapsulating a self-emulsifying drug delivery system (SEDDS) made of surfactants and a bioactive compound, retinyl palmitate. The SEDDS is used to enhance absorption of the vitamin A through food systems and to achieve targeted release of the active ingredient. Encapsulating vitamin A was difficult when using the spray dryer and the enteric coating, Aquacoat®. Losses of the micronutrient after a three month storage period ranged from 50-99% at both 25°C/20% RH and 45°C/60% RH. The result of a matrix encapsulation and poor coating formation contributed to the high losses. Further investigation of coating systems with the aim of stabilizing all three samples for a six month storage period such as using other encapsulating methods is recommended.
312

Computational Fluid Dynamics Analysis for Wastewater Floc Breakage in Orifice Flow

Fernandes, Aaron Xavier 22 November 2012 (has links)
In the present work, the breakage of wastewater particles in orifice flow is investigated through numerical simulations. Using maximum strain rate along particle paths as the breakage criterion, breakage is predicted using computational fluid dynamics. The numerical simulations confirm that nominal orifice strain rate cannot explain the higher particle breakage in single-orifice systems compared to that of multi-orifice systems, instead particle breakage was found to correlate well with the maximum strain rates in the system. On the issue of effect of initial particle location on breakage, numerical modeling shows that particles travelling along the centerline are suspected to break less than those travelling near the wall. However, experiments designed to study the breakage of particles injected at various radial locations proved inconclusive. Finally, results suggest that while single orifice systems are ideal for strong particles, multi-orifice systems may be more effective in breaking weak particles.
313

Development of Synthetic Processes and Characterization of BsubPcs with High Crystal Densities for Application in Organic Photovoltaic Devices

Fulford, Mabel Victoria 11 July 2013 (has links)
The original goal of this thesis was to develop process chemistry to yield boron subphthalocyanine (BsubPc) derivatives which were previously difficult to access. Retrospectively, it was found that these compounds show extremely high density crystal packing in comparison to other known BsubPcs, and thus this also became a focus of the thesis. A process to synthesize and purify fluoro-BsubPc was developed. This led to a detailed comparison of the physical and chemical properties of the three halo-BsubPcs in order to answer the question of which halo-BsubPc is appropriate for different purposes. Through this work, the previously unpublished crystal structure of the oxygen bridged dimer, µ-oxo-BsubPc, was found. A process was subsequently developed for the practical synthesis of µ-oxo-BsubPc for use in vacuum deposition and a number of µ-oxo-BsubPc crystal polymorphs were found and analyzed. The properties of this group of compounds are discussed in the context of other known BsubPcs.
314

Applications of Principal Component Analysis of Fluorescence Excitation-emission Matrices for Characterization of Natural Organic Matter in Water Treatment

Peleato, Nicolas Miguel 16 July 2013 (has links)
Quantification of natural organic matter (NOM) in water is limited by the complex and varied nature of compounds found in natural waters. Current characterization techniques, which identify and quantify fractions of NOM, are often expensive and time consuming suggesting the need for rapid and accurate characterization methods. In this work, principal component analysis of fluorescence excitation-emission matrices (FEEM-PCA) was investigated as a NOM characterization technique. Through the use of jar tests and disinfection by-product formation tests, FEEM-PCA was shown to be a good surrogate for disinfection by-product precursors. FEEM-PCA was also applied in order to characterize differences in humic-like, protein-like, and Rayleigh scattering between multiple source waters and due to differing treatment processes. A decrease in Rayleigh scattering influence was observed for a deep lake intake, and multiple processes were found to significantly affect humic-like substances, protein-like, and Rayleigh scattering fractions.
315

Impact of Pretreatment Methods on Enzymatic Hydrolysis of Softwood

Sun, Tim Tze Wei 17 July 2013 (has links)
Bioethanol is an appealing alternative to petroleum-based liquid fuel due to drivers such as environmental regulations and government mandates. Second generation lignocellulosic feedstocks are abundant, but their resistance to hydrolysis continues to be problematic. Different pretreatments have been proposed to increase cellulose reactivity. Softwood pine autohydrolyzed at different severities was subjected to further treatment to increase fibre reactivity. Liquid hot water is most effective at removing barriers, with the highest increase in sugar yield after enzymatic hydrolysis. Alkaline (NaOH) is found to be the worst option compared to dilute acid and organosolv. In addition, higher chemical concentrations and longer treatment times do not guarantee higher enzymatic hydrolysis yield. Process modifications such as fiber washing and multistage enzymatic hydrolysis are observed to be effective at increasing yield. However, more research is required to bring the enzymatic hydrolysis yield to a level where commercialization is feasible.
316

Adsorption of Single-ring Model Naphthenic Acid from Oil Sands Tailings Pond Water Using Petroleum Coke-derived Activated Carbon

Sarkar, Bithun 17 July 2013 (has links)
Petroleum coke-derived activated carbons were prepared and used for the adsorptive removal of a single-ring naphthenic acid (NA) from synthetic oil sands tailings pond water (TPW). The overall adsorption process was found to be intra-particle diffusion-controlled. The Weber-Morris intra-particle diffusion rate constants decreased from 7.43 to 1.23 mg/g min0.5 after activated carbon was post-oxidized with oxygen, suggesting a hindering effect of oxygen surface groups. The Freundlich model fit of the equilibrium adsorption isotherms and the small negative ΔHo pointed to a physisorption-dominated process and the importance of specific surface area. It was estimated that about 2.7 g/L of basic CO2-activated carbon is needed to reduce NA concentration from 120 mg/L to 2.5 mg/L (~98% removal) in synthetic TPW. However, equilibrium adsorption capacity was found to vary significantly after oxygen or nitrogen groups were introduced onto the surface. Therefore, there is a potential for enhanced adsorption by chemical functionalization of carbon.
317

Effect of Oxygen Partial Pressure and COD Loading on Biofilm Performance in a Membrane Aerated Bioreactor

Zhu, Ivan Xuetang 28 July 2008 (has links)
The membrane aerated bioreactor (MABR) is a unique technological innovation where a gas permeable membrane is applied to biological processes. In an MABR, oxygen and other substrates diffuse from the opposite directions into a biofilm, and thus simultaneous chemical oxygen demand (COD) and nitrogen removal can be achieved. However, controlling biofilm thickness, stability, and attachment is challenging. The objectives of this research were to study the effect of oxygen partial pressure on process performance with respect to nitrogen removal and examine the biomass properties in MABRs at different oxygen partial pressures and COD loadings. The conditions within the bioreactors were based on a low hydrodynamic condition (average fluid velocity 22 cm/min along the membrane surface), with the intention of minimizing the impact of the hydrodynamic shear on biomass properties. Simultaneous nitrification and denitrification were achieved in the reactors, and increasing oxygen partial pressure enhanced the total nitrogen removal. The biomass at the membrane-biofilm interface was more porous at a loading of 11.3 kg COD/1000 m2/day (areal porosity about 0.9) as compared with a loading of 22.6 kg COD/1000 m2/day (areal porosity about 0.7), indicating carbon substrate was limiting near the membrane. Long-term (over 30 days) experimental results showed that at the loading of 11.3 kg COD/1000 m2/day, the oxygen partial pressures of 0.59 atm and 0.88 atm caused over 80% of the biomass to become suspended in the bulk phase while at 0.25 atm and 0.41 atm oxygen over 97% of the biomass was immobilized on the membrane. There is a critical oxygen partial pressure that can sustain the biofilm, which increases with an increasing COD loading. The nitrifying population in the reactors was examined by applying fluorescence in situ hybridization (FISH). At the loading of 22.6 kg COD/1000 m2/day, there were 12% beta-proteobacterial ammonia oxidizing bacteria (AOB) and 17%Nitrobacter in homogenized biofilm biomass at 0.59 atm oxygen while there were 7% beta-proteobacterial AOB and 4% Nitrobacter at 0.25 atm oxygen. The ratio of protein to carbohydrate in extracellular polymeric substances (EPS) of the homogenized biomass in the reactor decreased with increasing oxygen partial pressure. Surface characterization of the biomass revealed that the higher the oxygen partial pressure, the lower the biomass hydrophobicity and surface charge. The ratio of EPS protein to carbohydrate in a membrane aerated biofilm decreased when approaching the membrane-biofilm interface. The distribution of nitrifiers and dissolved oxygen profiles inside the biofilm suggested that dual substrate limitations exist, and it was concluded that the membrane aerated biofilm had an aerobic region in the inner layer and an anoxic region in the outer layer. It is proposed that the loss of EPS due to secondary substrate consumption, especially the loss of EPS proteins, at the bottom of the biofilm was responsible for biofilm detachment subjected to a critical oxygen partial pressure.
318

Sulphur Chemistry in KOH-SO2 Activation of Fluid Coke and Mercury Adsorption from Aqueous Solutions

Cai, Hui 17 January 2012 (has links)
The technical feasibility of producing sulphur-impregnated activated carbons (SIACs) from high-sulphur fluid coke by chemical activation was investigated. Using KOH and SO2, the activation process was able to produce SIACs with controllable specific surface area (SBET), pore size distribution and sulphur content. The highest SBET was over 2500 m2/g and the highest sulphur content was 8.1 wt%. K-edge X-ray Absorption Near Edge Structure (XANES) spectroscopy was employed to characterize the sulphur in fluid cokes and SIACs. The results revealed that the sulphur on fluid coke surface was mainly in the form of organic sulphide and thiophene (total 91-95 %), in addition to some sulphate (5 - 9%). The study of KOH-treated fluid coke suggested that KOH was effective in converting organic sulphide and thiophene to water soluble inorganic species which were readily removed by acid and water washing. SO2 treatment of fluid coke added sulphur to fluid coke through SO2-carbon reaction. Elemental sulphur was the main product, while part of the thiophene, sulphide and sulphate in the raw coke remained in the product. In KOH-SO2 activation, disulphide, sulphide, sulphonate and sulphate were identified on SIAC surface; no thiophene was found, suggesting a complete removal of thiophene. Sulphur content in specific forms in SIACs was therefore controllable by varying the ratio of KOH, SO2 and fluid coke. SIACs produced from KOH-SO2 activation showed a comparable Hg2+ adsorption capacity (43 – 72 mg/g) with those reported in the literature (35-100 mg/g) and that of a commercial SIAC (41 mg/g). Although a larger SBET often resulted in a greater Hg2+ adsorption capacity, the benefit started to diminish when SBET was greater than about 1000 m2/g. A statistically significant and positive correlation was found between Hg2+ adsorption capacity and total sulphur content. Elemental sulphur and reduced sulphur were largely responsible for the enhanced Hg2+ adsorption.
319

Recovery of Surface Active Material from Municipal Wastewater Activated Sludge

Garcia Becerra, Flor Yunuen 17 February 2011 (has links)
Wastewater activated sludge is produced during the biological treatment of wastewater. After treating the sewage, the sludge is allowed to settle. Part of the settled material is returned to the treatment process as return activated sludge (RAS) and the excess is removed as waste activated sludge (WAS). The handling and disposal of the sludge are energy and capital-intensive treatments, with a significant environmental impact. This work studies the possibility to utilize RAS (an example of wastewater sludge) as a source of surface active agents. The results indicate that higly surface active materials can be extracted from RAS, and that the RAS extract has potential applications as a detergent and wood adhesive. The results also suggest that recovering a suite of products from RAS, a biological heterogenous source, can be technically feasible. An effective alkaline treatment was developed (at pH>12) that can extract up to 75% of the sludge’s organic matter, a yield higher than previously reported. Increasing the extraction pH increased the extract surface activity, which is linked to increasing the amount of higher molecular weight molecules and the presence of phospholipids. Increasing the extraction pH beyond 11 was also related to extensive cell lysis, increasing significantly the amount of recovered material and the surface activity of the extract. The alkaline extract has properties comparable to commercial detergents. Without further purification, the extract has a low surface tension (37 mN/m on average) and performs similarly to synthetic detergents. Further assessment of the RAS extract (insensitivity to pH, surface tension, interfacial tension) suggests that it may be suitable for commercial applications. The RAS extract can also be formulated into wood adhesives using glutaraldehyde as a crosslinker. The extract fraction with 10-50 kDa constituents at pH 9 achieves high adhesive shear strengths (4.5 MPa on average, at 30% relative humidity and 25°C) with 40% of wood failure. The adhesive strength of RAS-based adhesives is strongly correlated to its protein content.
320

Interpenetrating Polymer Networks Templated on Bicontinuous Microemulsions Containing Silicone Oil, Methacrylic Acid and Hydroxyethyl Methacrylate

Castellino, Victor 23 July 2013 (has links)
Interest in microemulsions as potential platforms for polymerization stems from the wide range of phase behaviour dependant morphologies and domain sizes that can be generated in a low viscosity environment. By introducing polymerizable components into the oil and aqueous phases of a microemulsion, we may essentially create a low viscosity, low interfacial tension, bicontinuous template with nanostructured morphologies and narrow domain size distributions analogous to those generated through conventional interpenetrating polymer network (IPN) synthesis and spinodal decomposition. The main objective of this dissertation is to test the application of bicontinuous microemulsion templates to the formulation and polymerization of a silicone-hydrogel IPN. In addition, the project expands on the classical definition of IPNs to a scale of entanglement at the level of groups of polymer chains, as opposed to molecular or chain-level entanglement. This study is divided into two main parts. In the first part, silicone microemulsions were developed and characterized according to the Hydrophilic-Lipophilic Difference (HLD) framework. The hydrophobicity of silicone oils, the characteristic curvature of silicone surfactants and the co-surfactant contribution of methacrylic acid (MAA) and hydroxyethyl methacrylate (HEMA) were quantified. These findings led to the successful formulation of bicontinuous microemulsions (μEs) containing silicone oil, silicone alkyl polyether and reactive monomers in aqueous solution. Ternary phase diagrams of these systems revealed the potential for silicone-containing polymer composites with bicontinuous morphologies. In the second part of this study, the formulation and simultaneous polymerization of polydimethylsiloxane-poly(methacrylic acid – hydroxyethyl methacrylate), (PDMS-P(MAA-HEMA) IPNs from bicontinuous microemulsions was demonstrated. Laser scanning confocal microscopy (LSCM) on swollen polymers highlights aqueous pathways, and indicates the formation of bicontinuous morphologies with domain sizes at equilibrium swelling ranging from ~100 nm to 1 μm. Incorporating polymerizable surfactants into the microemulsion aided in stabilizing the initial microemulsion structure during polymerization. The process developed demonstrates a simple, single-step polymerization approach to forming IPNs from low viscosity microemulsion templates, and could potentially be extended to a variety of hydrophilic and hydrophobic monomers.

Page generated in 0.0259 seconds