• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 334
  • 61
  • 10
  • Tagged with
  • 406
  • 90
  • 78
  • 42
  • 37
  • 29
  • 26
  • 25
  • 24
  • 21
  • 21
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Raman Characterization of Colloidal Nanoparticles using Hollow-core Photonic Crystal Fibers

Mak, Siu Wai Jacky 14 December 2011 (has links)
This Masters thesis investigates the ligand–particle binding interactions in the thiol–capped CdTe nanoparticles and dye adsorbed gold nanoparticles. In the CdTe nanoparticles, Raman modes corresponding to the CdTe core, thiol ligand and their interfacial layers were observed and correlated to the different nanoparticle properties. To the best of our knowledge, this is the first time that such strong Raman modes of the thiol-capped nanoparticles in aqueous solution have been reported. In the gold nanoparticle systems, gold–citrate binding interactions were observed as well as adsorption of the Raman dyes and binding with the polyethyleneglycol polymer coating and phospholipid coating. These observations coincided with findings from conventional optical techniques. In addition, gold nanoparticles were found to carbonize at high pump power and prolonged exposure time. In summary, the two nanoparticle characterizations demonstrated the high sensitivity and nondestructive nature of the photonic crystal fiber for Raman spectroscopy.
272

Lecithin-linker Microemulsion-based gels for Drug Delivery

Xuan, Xiao Yue 20 March 2012 (has links)
Microemulsions have gained interest from the pharmaceutical industry due to their ability to co-solubilize hydrophilic and lipophilic drugs, and to provide enhanced drug penetration. In this work, thermosensitive gelatin- and poloxamer 407-stabilized microemulsion-based gels (MBGs) were formulated using alcohol-free, low toxicity and low viscosity lecithin-based linker microemulsions. The addition of gelatin to water-rich bicontinuous microemulsions induced the formation of clear viscoelastic gels containing an oil-rich microemulsion as the gelatin seemed to dehydrate the original microemulsion. The addition of poloxamer 407 to water-continuous microemulsions produced MBGs with different gelation temperatures. High concentrations of lipophilic components in the microemulsion, particularly the oil, reduced sol-gel transition temperature, while hydrophilic components increased sol-gel transition temperature. Gelatin and poloxamer MBGs provided desirable viscoelastic properties for ophthalmic and transdermal applications with minimal impact on the transport properties of the original microemulsions.
273

Enrichment of Methanogenic Microcosms on Recalcitrant Lignocellulosic Biomass

Lacourt, William 14 December 2011 (has links)
To improve biogas production from lignocellulosics, methanogenic microbial enrichments were prepared from moose rumen fluid, beaver droppings, and internal circulation (IC) reactor granules amended with cellulose, pine needles, lignosulphonate, tannic acid, and poplar hydrolysate. Tannic acid delayed methanogenesis compared to cellulose only enrichments, both by reducing initial rates (up to 50% in beaver dropping cultures) and increasing lag times (up to 50 days in moose rumen cultures). Biogas yields from poplar hydrolysate were 56 % by beaver droppings, 51% % by IC granules, and 31 % by moose rumen enrichments. Bacterial community profiles, determined via denaturing gradient gel electrophoresis (DGGE) showed divergent populations between enrichments. Enrichment on pine needles or poplar hydrolysate promoted bioconversion of post extraction wash (PEW), and beaver dropping enrichments fed pine needles equaled the yield (about 23%) from IC granules. Together, the DGGE and PEW results provide evidence of acclimatization to previously recalcitrant feeds.
274

Experimental and Kinetic Modeling Study of 1-hexanol Combustion in an Opposed-flow Diffusion Flame

Yeung, Coleman Yue 04 January 2012 (has links)
Biofuels are of particular interest as they have the potential to reduce our dependence on petroleum-derived fuels for transportation. 1-Hexanol is a promising renewable long chain alcohol that can be used in conventional fuel blends or as a cosolvent for biodiesel mixtures. However, the fundamental combustion properties of 1-hexanol have not been fully characterized in the literature. Thus, new experimental results, consisting of temperature and concentration profiles of stable species were obtained for the oxidation of 1-hexanol generated in an opposed-flow diffusion flame at 0.101 MPa. The kinetic model consists of 361 chemical species and 2687 chemical reactions (most of them reversible). This experimental data were compared to the predicted values of a detailed chemical kinetic model proposed in literature to study the combustion of 1-hexanol. Reaction pathway and sensitivity analyses were performed to interpret the results. In addition, several improvements were investigated to optimize the proposed chemical kinetic mechanism.
275

Chemical Modeling of Ammoniacal Solutions in Ni/Co Hydrometallurgy

Roshdi, Sam 20 December 2011 (has links)
Chemical modeling has become an important subject of research in applied thermodynamics for designing, developing, optimizing and controlling of different industrial processes. In this work, a new database for successful modeling of solid-aqueous phase equilibria in specific hydrometallurgical processes was developed using the Mixed Solvent Electrolyte (MSE(H3O+)) model of the OLI Systems software. The ionic interaction parameters between dominant species in the solution were determined by fitting available binary and ternary experimental data such as mean activity, heat capacity and solubility data; then they were validated in multi-component systems. Developed model predicted the phase behaviour in ammoniacal solutions containing cobalt, nickel, copper, and zinc in the Copper Boil process. New sets of double-salt solubility data were measured and used for accuracy validation of the model. Using HSC 6.1 software linked with MSE model, the copper boil processes was simulated successfully to provide some practical recommendations for the optimum process operation.
276

An in silico Characterization of Microbial Electrosynthesis for Metabolic Engineering of Biochemicals

Pandit, Aditya 15 August 2012 (has links)
A critical concern in metabolic engineering is the need to balance the demand and supply of redox intermediates. Bioelectrochemical techniques offer a promising method to alleviate redox imbalances during the synthesis of biochemicals. Broadly, these techniques reduce intracellular NAD+ to NADH and therefore manipulate the cell’s redox balance. The cellular response to such redox changes and the additional reducing can be harnessed to produce desired metabolites. In the context of microbial fermentation, these bioelectrochemical techniques can improve product yields and/or productivity. We have developed a method to characterize the role of bioelectrosynthesis in chemical production using the genome-scale metabolic model of E. coli. The results elucidate the role of bioelectrosynthesis and its impact on biomass growth, cellular ATP yields and biochemical production. The results also suggest that strain design strategies can change for fermentation processes that employ microbial electrosynthesis and suggest that dynamic operating strategies lead to maximizing productivity.
277

The Observed Stable Carbon Isotope Fractionation Effects of a Chloroform and 1,1,1-Trichloroethane Dechlorinating Culture

Chan, Calvin 21 November 2012 (has links)
Little is known about the enzyme-substrate interactions occurring during the dechlorination of chloroform (CF) and 1,1,1-trichloroethane (1,1,1-TCA) by the enrichment culture containing Dehalobacters, hereafter called DHB-CF/MEL. Compound specific isotope analysis (CSIA) is used to investigate the factors which may affect the isotope fractionation observed for CF and 1,1,1-TCA dechlorination. This thesis reports the first isotope enrichment factors observed for CF biodegradation at -27.5‰ ± 0.9‰, thus providing fundamental information for comparing isotope enrichment factors observed during trichlorinated alkane degradation by DHB-CF/MEL. The thesis also reports how the presence of CF and 1,1,1-TCA influences isotope fractionation and explores the possible influence of substrate inhibition on isotope fractionation during 1,1,1-TCA dechlorination. The data suggests that substrate inhibition during 1,1,1-TCA dechlorination by DHB-CF/MEL may not affect carbon isotope fractionation. The results suggest that CSIA is a promising monitoring tool even for the simultaneous biodegradation of CF and 1,1,1-TCA at different 1,1,1-TCA starting concentration.
278

A Study of Drug Transport in the Vitreous Humor: Effect of Drug Size; Comparing Micro- and Macro-scale diffusion; Assessing Vitreous Models; and Obtaining In Vivo Data

Gajraj, Rhiad 19 November 2012 (has links)
Treatment of vision impairing diseases involves drug transport through the vitreous humor. Diffusion cells were used to measure macro-scale (mutual) diffusivity (Dm) to understand how solute size affects diffusion through the vitreous humor of rabbit and porcine eyes. Solutes examined included timolol maleate, dexamethasone sodium phosphate (DMSP), sodium fluorescein, and FITC-dextrans (4, 40, and 150kDa). Diffusivity was inversely dependent on solute size. The Dm's of small solutes in the vitreous were 30 – 65% of that in PBS, while the Dm's of large solutes were 40 – 60% of that in PBS. Extrapolations to the human eye produced similar results using diffusivities based on either species. We used Diffusion Ordered NMR Spectroscopy to measure micro-scale (self) diffusivity (Ds) of DMSP through vitreous humor. The Ds and Dm were significantly different in PBS, but similar in vitreous. A method for obtaining in vivo imagery and data of vitreous fluorophore distribution is also presented.
279

Controlling the Emergence of Hematopoietic Progenitor Cells from Pluripotent Stem Cells

Purpura, Kelly Anne 05 December 2012 (has links)
Embryogenesis occurs within a complex and dynamic cellular environment that influences cell fate decisions. Pluripotent stem cells (PSCs) are a valuable tool for research into disease models as well as a resource for cell therapy due to their capacity to self-renew and differentiate into all cell types. Mimicking aspects of the embryonic microenvironment in vitro impacts the resultant functional cells. The aim of this work was to develop a controlled and scaleable process for the generation of hematopoietic progenitor cells (HPCs) from embryonic stem cells (ESCs). We demonstrated with bioreactor-grown embryoid bodies (EBs) that increased HPC generation can be elicited by decreasing the oxygen tension by a mechanism where vascular endothelial growth factor receptor 2 (VEGFR2) activation is controlled through competition with the ligand decoy VEGFR1. This is important as it demonstrates the inherent responsiveness of the developing hematopoietic system to external forces and influences. We also established a serum-free system that facilitates directed differentiation, determining 5 ng/ml bone morphogenetic protein-4 (BMP4) with 50 ng/ml thrombopoietin (TPO) could generate 292 ± 42 colony forming cells (CFC)/5 x 10^4 cells with early VEGF treatment (25 ng/ml, day 0-5). We also controlled aggregate size influencing relative endogenous and exogenous growth factor signaling and modulating mesodermal differentiation; CFC output was optimal when initialized with 100 cell aggregates. For the first time, we demonstrated efficacy of local growth factor delivery by producing HPCs with gelatin microparticles (MP). Overall, these design components generate HPCs in a controlled and reproducible manner using a serum-free bioprocess that couples size controlled aggregates containing gelatin MPs for localized growth factor release of BMP4 and TPO with hypoxia to induce endogenous VEGF production. These strategies provide a tunable platform for developing cell therapies and high density growth, within a bioreactor system, can be facilitated by hydrogel encapsulation of the aggregates.
280

Characterization of the White-rot Fungus, Phanerochaete carnosa, through Proteomic Methods and Compositional Analysis of Decayed Wood FibreCharacterization of the White-rot Fungus, Phanerochaete carnosa, through Proteomic Methods and Compositional Analysis of Decayed Wood Fibre

Mahajan, Sonam 10 January 2012 (has links)
Biocatalysts are important tools for harnessing the potential of wood fibres since they can perform specific reactions with low environmental impact. Challenges to bioconversion technologies as applied to wood fibres include low accessibility of plant cell wall polymers and the heterogeneity of plant cell walls, which makes it difficult to predict conversion efficiencies. White-rot fungi are among the most efficient degraders of plant fibre (lignocellulose), capable of degrading cellulose, hemicellulose and lignin. Phanerochaete carnosa is a white-rot fungus that, in contrast to many white-rot fungi that have been studied to date, was isolated almost exclusively from fallen coniferous trees (softwood). While several studies describe the lignocellulolytic activity of the hardwood-degrading, model white-rot fungus Phanerochaete chrysosporium, the lignocellulolytic activity of P. carnosa has not been investigated. An underlying hypothesis of this thesis is that P. carnosa encodes enzymes that are particularly well suited for processing softwood fibre, which is an especially recalcitrant feedstock, though a major resource for Canada. Moreover, given the phylogenetic similarity of P. carnosa and P. chrysosporium, it is anticipated that the identification of pertinent enzymes for softwood degradation can be more easily conducted. In particular, this project describes the characterization of P. carnosa in terms of the growth conditions that support lignocellulolytic activity, the effect of enzymes secreted by P. carnosa on the chemistry of softwood feedstocks, and the characterization of the corresponding secretome using proteomic techniques. Through this study, cultivation methods for P. carnosa were established and biochemical assays for protein activity and quantification were developed. Analytical methods, including FTIR and ToF-SIMS were used to characterize wood samples at advancing stages of decay, and revealed preferential degradation of lignin in the early stages of growth on all softwoods analyzed. Finally, an in depth proteomic analysis of the proteins secreted by P. carnosa on spruce and cellulose established that similar sets of enzyme activities are elicited by P. carnosa grown on different lignocellulosic substrates, albeit to different expression levels.

Page generated in 0.0357 seconds