• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graph Cohomology

Lin, Matthew 01 January 2016 (has links)
What is the cohomology of a graph? Cohomology is a topological invariant and encodes such information as genus and euler characteristic. Graphs are combinatorial objects which may not a priori admit a natural and isomorphism invariant cohomology ring. In this project, given any finite graph G, we constructively define a cohomology ring H*(G) of G. Our method uses graph associahedra and toric varieties. Given a graph, there is a canonically associated convex polytope, called the graph associahedron, constructed from G. In turn, a convex polytope uniquely determines a toric variety. We synthesize these results, and describe the cohomology of the associated variety directly in terms of the graph G itself.
2

Arithmetical Graphs, Riemann-Roch Structure for Lattices, and the Frobenius Number Problem

Usatine, Jeremy 01 January 2014 (has links)
If R is a list of positive integers with greatest common denominator equal to 1, calculating the Frobenius number of R is in general NP-hard. Dino Lorenzini defines the arithmetical graph, which naturally arises in arithmetic geometry, and a notion of genus, the g-number, that in specific cases coincides with the Frobenius number of R. A result of Dino Lorenzini's gives a method for quickly calculating upper bounds for the g-number of arithmetical graphs. We discuss the arithmetic geometry related to arithmetical graphs and present an example of an arithmetical graph that arises in this context. We also discuss the construction for Lorenzini's Riemann-Roch structure and how it relates to the Riemann-Roch theorem for finite graphs shown by Matthew Baker and Serguei Norine. We then focus on the connection between the Frobenius number and arithmetical graphs. Using the Laplacian of an arithmetical graph and a formulation of chip-firing on the vertices of an arithmetical graph, we show results that can be used to find arithmetical graphs whose g-numbers correspond to the Frobenius number of R. We describe how this can be used to quickly calculate upper bounds for the Frobenius number of R.

Page generated in 0.0714 seconds