• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 236
  • 43
  • 5
  • 2
  • Tagged with
  • 286
  • 72
  • 56
  • 42
  • 31
  • 25
  • 23
  • 23
  • 21
  • 21
  • 20
  • 20
  • 20
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Solvent Refining of Metallurgical Grade Silicon Using Iron

Shaghayegh, Esfahani 31 December 2010 (has links)
Purification of metallurgical grade silicon (MG- Si) by a combination of solvent refining and physical separation has been studied. MG-Si was alloyed with iron and solidified under different cooling rates to grow pure Si dendrites from the alloy. The Si dendrites and FeSi2 that were formed after solidification were then separated by a gravity-based method. The separation method relies on significantly different densities of Si and FeSi2, and uses a heavy liquid with specific gravity between the two phases to float the former on the surface of a heavy liquid, while the latter sinks to the bottom. The effect of particle size and cooling rate on the Si yield and separation efficiency of the Si phase was investigated. The floated Si particles were further purified by removing the physically adherent Fe-Si phase, using an acid leaching method. Analysis of the produced silicon indicates that several impurity elements including P and B can be efficiently removed using this simple and low-cost technique.
162

Development of Flexible and Optically Transparent Composite Film with Wheat Straw Nanofibres

Wu, Nan 03 December 2012 (has links)
Cellulose is a potential source of nano-material not only because it possesses excellent mechanical and optical properties, but also because it is environmentally benign. In this study, nanofibres derived from wheat straw, an agriculture residue, was utilized in producing flexible and optically transparent nanocompostie films. The composites were produced using a bi-phase impregnation technique that coats the dried nanofibre films with clear polyurethane acrylate resins using UV radiation induced curing. The nanocomposite films thus produced possess excellent tensile properties (161MPa in strength and 9GPa in Young’s Modulus), superior thermal stability (above 300°C), low coefficient of thermal expansion (8-9ppm/K), good light transparency (80%), excellent flexibility and abrasion resistance. These nanocomposite films are aimed to replace the conventional glass substrates made in batches to a polymer based substrates that can be efficiently produced in a roll-to-roll process for the base of the future flexible flat panel displays.
163

An Investigation of the Suitability of Using AISI 1117 Carbon Steel in a Quench and Self-tempering Process to Satisfy ASTM A 706 Standard of Rebar

Allen, Matthew 11 August 2011 (has links)
Experiments were conducted to investigate the potential of using a quench and self-tempering heat treatment process with AISI 1117 steel to satisfy the mechanical properties of ASTM A 706 rebar. A series of quenching tests were performed and the resulting microstructure and mechanical properties studied using optical microscopy, microhardness measurement, and tensile tests. The presence of martensite throughout the samples contributed to the enhanced strength and strain-hardening ratio (tensile to yield strength) of the material. The experimental results showed that AISI 1117 is capable of meeting the ASTM standard. In addition to the experiments, a computer model using the finite difference method and incorporating heat transfer and microstructure evolution was developed to assist in future optimization of the heat treatment process.
164

Experimental Study of the Microstructural Evolution of Chemical Vapor Deposited (CVD) Nickel upon Annealing

Chichi, Chen 23 August 2011 (has links)
The effect of annealing conditions on the microstructure evolution of CVD nickel was investigated systematically in the present study by differential scanning calorimetry, optical microscopy and transmission electron microscopy (TEM), upon both ex-situ and in-situ annealing. TEM observation revealed the as-deposited CVD nickel possessed a bi-modal grain structure, with large columnar grains embedded in nanocrystalline matrix. Ultrafine and nano growth twins were present as well as multiply twinned grains with five-fold symmetry. Microstructure observation upon annealing showed that grain growth did not occur until annealing at 400ºC. Detwinning was observed at 400ºC and higher temperatures. The ultrafine and nano twins tended to transform into dislocation cell structures and this phenomenon was driven by the excess free energy associated with the high density of grown-in twin boundaries. The five-fold twinned grains were found to be thermally stable up to 600ºC. The hardness was observed to decrease with increasing annealing temperature.
165

The Study of Metal Diffusion on Si(001) using a Nanostencil Shadow Mask

To, Nelson 25 August 2011 (has links)
A self-aligning nanostencil mask is used to fabricate circular features of tin, indium and silver on an atomically clean Si(001) substrate. The shadow mask limits deposited material to areas under openings in the mask, leaving adjacent clean areas for material to diffuse. STM, SEM and AFM have been used to study the surface diffusion of these metals in UHV. The diffusion of tin is relatively limited in comparison to the other metals. Indium forms metal islands that dissolve over time and contribute to the spreading of a surrounding single layer film. Lastly, silver forms a film that spreads even in the absence of metal islands.
166

Stress-Induced Heat Generation and Strain Localization in Polycrystalline and Nanocrystalline Nickel

Chan, Timothy Koon Ching 06 December 2011 (has links)
Commercially available polycrystalline Ni (Ni200; grain size: 32 μm) and electrodeposited nanocrystalline Ni (grain size: 57 nm), Ni-2.6%Fe (grain size: 25 nm) and Ni-8.5%Fe (grain size: 20 nm) were analyzed for the phenomena of stress-induced heat generation and strain localization during plastic deformation at room temperature (i.e. 250C). Tensile specimens according to ASTM E8 standard dimensions were tested at strain rates of 10-2/s and 10-1/s, respectively, to record the amount of heat dissipated and the change of localized strain using a high resolution infrared (IR) detector and digital image correlation (DIC) camera, respectively. Results have shown that the maximum temperatures that were recorded in nanocrystalline Ni and Ni-Fe alloys were at least 300C lower than the onset temperatures for subgrain coalescence previously measured through differential scanning calorimetry. It can be concluded that thermally activated grain growth during tensile testing of nanocrystalline Ni and Ni-Fe alloys is not likely to occur.
167

A Mathematical Model for Carbothermic Reduction of Dust−carbon Composite Agglomerates

Kuwauchi, Yuki 20 November 2012 (has links)
A mathematical model to simulate the reaction kinetics of dust–carbon composite agglomerates in an RHF was developed. Major chemical, thermal and physical phenomena taking place during RHF treatment were formulated and the corresponding equations were solved to yield the trend of solid composition, temperature and gas composition of the agglomerates. The model calculation results indicate that the pellet reduction is accelerated by the reducing gas from high–volatile reductants if the gas is released after the pellet temperature is sufficiently high for reduction. The reduction of zinc oxide can also be represented using the model by implementing its small particle size caused by the inherent vaporization/re–oxidization process that zinc comes through in a melter. It was demonstrated that the proposed model can be used as an engineering tool to determine the optimum operating conditions for the RHF process to promote recycling a wide range of waste materials.
168

Study of Properties of Cryolite – Lithium Fluoride Melt containing Silica

Thomas, Sridevi 17 December 2012 (has links)
The ultimate goal of this study is to examine the feasibility of extracting silicon from silica through electrolysis. The objective of the thesis was to evaluate the physico-chemical properties of a cryolite-lithium fluoride mixture as an electrolyte for the electrolysis process. A study of 86.2wt%Cryolite and13.8wt%Lithium fluoride melt with silica concentration varying from 0-4wt% and temperature range of 900-1000°C was done. Three properties were measured using two sets of experiments: 1) Dissolution Behaviour Determination, to obtain a) solubility limit, b) dissolution rate (mass transfer coefficient) and 2) density using Archimedes’ Principle. The study concluded that solubility and dissolution rate increases with temperature and the addition of LiF to cryolite decreases the solubility limit but increases the rate at which silica dissolves into the melt. With addition of silica, the apparent density of electrolyte first increases up to 2-3wt% and the drops.
169

Study of Properties of Cryolite – Lithium Fluoride Melt Containing Silica

Thomas, Sridevi 28 November 2012 (has links)
The ultimate goal of this study is to examine the feasibility of extracting silicon from silica through electrolysis. The objective of the thesis was to evaluate the physico-chemical properties of a cryolite-lithium fluoride mixture as an electrolyte for the electrolysis process. A study of 86.2wt%Cryolite and13.8wt%Lithium fluoride melt with silica concentration varying from 0-4wt% and temperature range of 900-1000°C was done. Three properties were measured using two sets of experiments: 1) Dissolution Behaviour Determination, to obtain a) solubility limit, b) dissolution rate (mass transfer coefficient) and 2) density using Archimedes’ Principle. The study concluded that solubility and dissolution rate increases with temperature and the addition of LiF to cryolite decreases the solubility limit but increases the rate at which silica dissolves into the melt. With addition of silica, the apparent density of electrolyte first increases up to 2-3wt% and the drops.
170

Protective Coatings of Y2O3 and CeO2 on Porous Stainless Steel Supports for Use in Intermediate Temperature Metal-supported Solid Oxide Fuel Cells

Yan, Yan 27 November 2012 (has links)
With increasing attention paid to metal-supported SOFCs recently, metal supports have become important factors in the performance of the cells. The formation of surface oxides and the poisoning of Cr from Cr2O3-forming metal supports often result in the degradation of the cells. However, few studies have focused on developing oxidation resistance and decreasing Cr migration from porous alloys in intermediate temperature metal-supported SOFCs. In this work, Y2O3 and CeO2 coatings were applied to porous AISI 430 stainless steels by sol-gel dip coating. Phases and microstructures of the coatings on the porous metal supports were characterized by XRD and SEM with EDS, respectively. The effects of the coatings on oxidation resistance of the supports were evaluated by cyclic oxidation testing. Electrical and electrochemical properties of LSCF-SDC cathodes and symmetrical cells deposited on the Y2O3-protected metal supports were also investigated. The issue of Cr depletion of the supports was also discussed.

Page generated in 0.0247 seconds