1 |
A Study of Liquid Spray CoolingFang, Chung-Cheng 07 July 2003 (has links)
Abstract
Spray cooling is frequently encountered in a number of engineering applications. An experimental study was made to investigate the effect of liquid sprays used to cool a hot surface. Both pure water and R-134a were served as a working medium sprayed from a single circular nozzle onto a Pt plated surface of an electrically heated surface. Spray cooling tests were performed for steady state and transient experiment. Cooling characteristics curves were obtained over a range of Weber number(Water¡G80¡B148¡B231¡AR-134a¡G50¡B96¡B152),pressure drop of liquid(0.1Mpa¡B0.15Mpa¡B0.2Mpa),degree of subcooling (Water¡G55¢J¡B60¢J¡AR-134a¡G2¢J¡B4¢J) and initial temperature(Water¡G240¢J¡AR-134a¡G60¢J). Thermal design data of high performance as well as more and further physical insight of the above-stated spray cooling heat transfer can be acquired. The results will hopefully be helpful not only for the academia but for the industry.
|
2 |
An Investigation of Solute Solubility in the Propellant HFA-134aHoye, Julie Annalisa January 2007 (has links)
The reformulation of pressurized metered dose inhalers (MDIs) with hydrofluoroalkanes (HFAs) from chlorofluorocarbons (CFCs) has given rise to many solubility challenges. Compounds and excipients previously used in CFCs were observed to have significantly different solubility values in HFA-134a. In this investigation, the solubility values of solid organic solutes were determined in pure HFA-134a and HFA-134a with cosolvent (0 - 20% w/w ethanol). The solubilities of solid solutes in HFA-134a were also compared with those in 2H,3H-decafluoropentane (DFP) in order to assess the suitability of DFP as a liquid model propellant. The experimental set of solutes display diverse physico-chemical properties and yielded solubility values that ranged over four orders of magnitude. The experimental solubilities were compared to calculated values obtained from ideal solubility and regular solution theory models. While the theoretical models did not offer absolute solubility estimations, a clear correlation with the ideal solubility (melting point) was noted. Further consideration utilizing multiple linear regression models afforded correlations based on molecular properties. Regression models, containing melting point and logP (or molar volume) resulted in promising correlations in both pure HFA-134a and HFA-134a/cosolvent systems where the average absolute errors ranged from 0.49 to 0.82 log units, (average factor errors of 3.09 and 6.61, respectively). In general, a linear relationship was observed between log mole fraction solubility in HFA-134a and fraction ethanol. The effect on solubilization ranged from 1.3 to 99.4 times when 20% w/w ethanol was introduced, relative to pure HFA-134a. DFP appears to be a promising liquid model for pure HFA-134a for pre-formulation calculations. A two parameter equation were found to be significant in pure HFA-134a where the average absolute error (AAE) value was 0.61 log units (average factor errors of 4.07).
|
3 |
Determination of Two-Phase Mass Flow Rate in Refrigerant R-134a Pipe FlowWang, Jianwei 08 1900 (has links)
An examination of various methods for mass flow rate measurements was undertaken to evaluate their applicability for measuring refrigerant R-134a two-phase mass flow in refrigeration and air-conditioning equipment. An experimental apparatus was constructed to generate the required two-phase flow conditions. A turbine and a venturi flowmeter were used together with either a capacitance transducer or a gamma densitometer to determine the two-phase mass flow rate. The time-averaged void fraction was measured using a capacitance transducer and a gamma densitometer. Their measurements were in good agreement. Hence, for mass flow rate measurements, the capacitance transducer was used as the void fraction meter because of its ease of operation. A number of models were used to combine the output of either the turbine flowmeter or the venturi flowmeter, with the void fraction measurement to estimate the mass flow rate. It was found that, within the range of experimental data tested in the present work, the venturi flowmeter, in conjunction with Chisholm's model, provided the best agreement with the experimental results. / Thesis / Master of Engineering (MEngr)
|
4 |
Estudo teórico-experimental da ebulição convectiva do refrigerante R-134a em tubos lisos / A theoretical and experimental study of convective boiling of refrigerant R-134a in smooth tubesBarbieri, Paulo Eduardo Lopes 02 September 2005 (has links)
Apresenta um estudo teórico-experimental da ebulição convectiva do fluido refrigerante R-134a no interior de tubos lisos. Os parâmetros físicos disponíveis para medida foram: pressão, temperatura, vazão de refrigerante e potência de aquecimento, os quais, juntamente com o registro fotográfico, foram utilizados para caracterizar os padrões de escoamento e as transições, investigando-se os efeitos do diâmetro do tubo, da velocidade mássica e do fluxo de calor sobre a perda de pressão e a transferência de calor. Os principais padrões de escoamento visualizados foram: o intermitente, o anular e o estratificado, nos quais constatou-se que, as transições são governadas, principalmente, pelos efeitos da velocidade mássica e do diâmetro do tubo. Dentre estes padrões de escoamento, o anular e o estratificado foram modelados analiticamente. O modelo para o escoamento anular foi utilizado na obtenção de correlações para o fator de atrito interfacial e para espessura do filme de líquido. O modelo para o escoamento estratificado foi dividido em duas partes, uma destinada a obter a configuração da interface, a qual se mostrou côncava e a outra destinada à determinação dos fatores de atrito líquido-parede e interfacial os quais foram correlacionados / The research reports a theoretical and experimental study of convective boiling of refrigerant R-134a in smooth tubes. Tests have been carried out to measure the following physical parameters at the test section: mass flow rate, pressure and pressure drop, refrigerant and surface temperatures and the electrical power. In addition to these parameters, a photographic study has been carried out from pictures taken at the test section exit in order to determine the flow regimes that intervene under the imposed operating conditions. Effects over the pressure drop and heat transfer of the mass flow rate, heat flux, quality, and tube diameter have been investigated. Three flow regimes have been found: the intermitent, the stratified and the annular. Flow regime transitions are apparently governed by the mass velocity and tube diameter. The annular and the stratified flow regimes have been semi-empirically modeled using a mechanistic approach. The annular flow model has been applied to develop correlations for two important physical parameters: the interfacial friction factor and the film thickness. Through the stratified model, the shape of the interface has been evaluated along with correlations for the liquid to wall and interface friction factors
|
5 |
Estudo teórico-experimental da ebulição convectiva do refrigerante R-134a em tubos lisos / A theoretical and experimental study of convective boiling of refrigerant R-134a in smooth tubesPaulo Eduardo Lopes Barbieri 02 September 2005 (has links)
Apresenta um estudo teórico-experimental da ebulição convectiva do fluido refrigerante R-134a no interior de tubos lisos. Os parâmetros físicos disponíveis para medida foram: pressão, temperatura, vazão de refrigerante e potência de aquecimento, os quais, juntamente com o registro fotográfico, foram utilizados para caracterizar os padrões de escoamento e as transições, investigando-se os efeitos do diâmetro do tubo, da velocidade mássica e do fluxo de calor sobre a perda de pressão e a transferência de calor. Os principais padrões de escoamento visualizados foram: o intermitente, o anular e o estratificado, nos quais constatou-se que, as transições são governadas, principalmente, pelos efeitos da velocidade mássica e do diâmetro do tubo. Dentre estes padrões de escoamento, o anular e o estratificado foram modelados analiticamente. O modelo para o escoamento anular foi utilizado na obtenção de correlações para o fator de atrito interfacial e para espessura do filme de líquido. O modelo para o escoamento estratificado foi dividido em duas partes, uma destinada a obter a configuração da interface, a qual se mostrou côncava e a outra destinada à determinação dos fatores de atrito líquido-parede e interfacial os quais foram correlacionados / The research reports a theoretical and experimental study of convective boiling of refrigerant R-134a in smooth tubes. Tests have been carried out to measure the following physical parameters at the test section: mass flow rate, pressure and pressure drop, refrigerant and surface temperatures and the electrical power. In addition to these parameters, a photographic study has been carried out from pictures taken at the test section exit in order to determine the flow regimes that intervene under the imposed operating conditions. Effects over the pressure drop and heat transfer of the mass flow rate, heat flux, quality, and tube diameter have been investigated. Three flow regimes have been found: the intermitent, the stratified and the annular. Flow regime transitions are apparently governed by the mass velocity and tube diameter. The annular and the stratified flow regimes have been semi-empirically modeled using a mechanistic approach. The annular flow model has been applied to develop correlations for two important physical parameters: the interfacial friction factor and the film thickness. Through the stratified model, the shape of the interface has been evaluated along with correlations for the liquid to wall and interface friction factors
|
6 |
Tests of Fluid-to-Fluid Scaling Laws for Supercritical Heat TransferMouslim, Abderrazzak 20 March 2019 (has links)
A comparison of available fluid-to-fluid scaling laws for scaling convective heat transfer at supercritical pressures showed that the ones suggested by Zahlan, Groeneveld and Tavoularis (ZGT) have some advantages. The applicability of the ZGT laws was tested for pairs of fluids including carbon dioxide, water or Refrigerant R134a. The conditions of previous measurements taken in the Supercritical University of Ottawa Loop with CO2 flowing vertically upwards in an electrically heated tube with 8 mm ID were scaled to equivalent conditions in R134a and new measurements of the heat transfer coefficient (HTC) were taken in the same tube using the latter fluid. The inlet pressure was 1.13 times the critical pressure (4.06 MPa), the mass flux was in the range from 212 kg/m^2 s to 1609 kg/m^2 s, the heat flux was in the range from 2 kW/m^2 to 137 kW/m^2, and the inlet temperature was in the range from 62 ℃ to 105 ℃. The HTC at equivalent conditions in water was also determined with the use of transcritical look-up tables. Average and linearly varying corrections to the ZGT scaling laws were derived by statistical analysis for each pair of fluids under NHT or DHT conditions. Such corrections reduced the standard deviation of the scaling error but did not eliminate the presence of large errors under many sets of conditions. As expected, scaling errors were in general larger for DHT than NHT conditions. The present results did not reveal any systematic and correctable dependence of the scaling error upon the mass flux or heat flux but showed that scaling errors became particularly large as the bulk temperature T_b approached the pseudocritical temperature T_pc. In conclusion, the ZGT scaling laws appear to be fairly accurate for the three pairs of fluids considered in the liquid-like region with T_b/T_pc ≤ 0.94 and possibly in the gas-like region with T_b/T_pc ≥ 1.02, whereas outside this range scaling errors could be significant. It was also found that the ZGT scaling laws do not scale accurately the onset of DHT in different fluids.
|
7 |
[en] EVALUATION OF THE GAS LOAD INFLUENCE ON AN AUTOMOTIVE AIR CONDITIONING SYSTEM / [pt] AVALIAÇÃO DA INFLUÊNCIA DA CARGA DE GÁS EM UM SISTEMA DE CONDICIONAMENTO DE AR AUTOMOTIVORAFAEL PRUDENCIO SACSA DIAZ 07 July 2003 (has links)
[pt] A tecnologia automotiva moderna alcança progressos
consideráveis tanto no aspecto mecânico como funcional, com
esses avanços tecnológicos, o maior progresso foi feito na
estrutura dos automóveis e dos sistemas de ar condicionado.
O presente trabalho é desenvolvido considerando a
importância da utilização de gás refrigerante, já que se
tornou um assunto ambiental de grande importância pelo
fato de ter um papel na destruição da camada de ozônio.
Foi construída uma bancada experimental que consta de duas
câmaras isoladas para a colocação do equipamento,
instrumentos, dispositivos de medição e geração de
carga térmica, em seguida foi montado um condicionador de
ar automotivo composto por componentes originais do sistema
de condicionamento de ar de um automóvel para simular
funcionamentos, com a finalidade de avaliar os parâmetros
de funcionamento afetados quando são utilizadas diferentes
cargas de gás refrigerante.
Foram realizados testes controlando a temperatura e umidade
constantes no habitáculo automotivo (câmara 1), para
variações de temperatura na câmara (2), da vazão mássica no
sistema e variações de torque e velocidade, no sistema
motor - compressor, com diferentes quantidades de gás
refrigerante originando situações de insuficiência de
carga, carga adequada e sobre carga.
Para o controle da carga térmica dentro das câmaras foram
utilizados controladores de potência e um software
aplicativo. Os parâmetros de operação do equipamento foram
obtidos e arquivados mediante um sistema automático de
aquisição de dados.
Os resultados experimentais mostraram o comportamento real
do ciclo de refrigeração, a queda de pressão nas linhas de
descarga e de sucção, assim como no condensador e no
evaporador. Apresenta-se o sub-resfriamento do refrigerante
na saída do condensador bem como o superaquecimento na
sucção. Verifica-se uma tendência politrópica, no lugar do
processo isentrópico do ciclo ideal. Esta divergência
do ciclo faz com que a temperatura de descarga do
compressor (T2) seja elevada.
A carga de gás refrigerante exerce influência no desempenho
de um sistema de condicionamento de ar e os resultados do
presente trabalho concordaram bem com as expectativas
teóricas do problema considerado. / [en] The modern automotive technology reaches considerable
progress s in the mechanical aspect as in the functional,
with these technological advances, the biggest progress was
made in the structure of the automobiles and in the air
conditioning systems. Considering the importance of the use
of refrigerant, the present work is developed, because the
refrigerant gas became a great importance ambient subject
for its paper in the ozone layer destruction.
An experimental bench was constructed; it consists of two
isolated chambers, where equipment, instruments, devices of
measurement and thermal load generation were installed.
After that, an automotive air conditioner was mounted, made
up of original components from an automobile air
conditioning system to simulate operation, with the purpose
to evaluate the operation parameters affected when using
different refrigerant loads.
Tests with constant temperature and humidity in the
simulated automotive chamber (1) for variations of chamber
(2) temperature, of mass outflow in the system
and variations of torque and speed in the motor-compressor
system were performed with different refrigerating amounts
creating situations of insufficient load, adequate
load and over load.
For the chambers thermal load controlling, power
controlling and appropriate software were used. The
equipment operational parameters had been gotten and filed
by means of an automatic data acquisition system. The
experimental results had shown the real behavior of the
refrigeration cycle, the pressure drop in the discharge and
suction lines, as well as in the condenser and the
evaporator. Also the refrigerant sub-cooling in the exit of
the condenser, the gas overheating in the suction, the
polytrophic trend instead of the ideal cycle isentropic
process was observed. This divergence from the ideal cycle
makes the discharge compressor temperature (T2) was higher.
The refrigerant gas charge influences the performance of an
air conditioning system and the present work results agreed
well with the theoretical expectations for the considered
problem.
|
8 |
Performance Analysis of CO2 Heat Pumps in Different ApplicationsThanggavelu, Jaykumar January 2022 (has links)
This study focuses on researching the performance of CO2 heat pumps in different real-time applications and in some studies, it compares the performance to synthetic and other natural refrigerants based on heat pump data provided from buildings. The research on the performance of the CO2 heat pump is performed based on Sweden's climatic conditions. The study consists of four different case studies each focusing on the CO2 heat pump used for four different buildings. The first study evaluates the performance of air source CO2 heat pump installed in a residential building and performs cost benefit in comparison to district heating energy consumption. The second study investigates the performance of the air source CO2 heat pump for the district heating application and compares the same with other refrigerant heat pumps. The refrigerants compared with include Ammonia (R-717), Propane (R-290), R-134a (1,1,1,2-tetrafluoroethane). The third study examines the performance of air source CO2 heat pumps in a commercial building with the field measured data obtained directly from the heat pump sensors through the online portal “itop”. The fourth study analyses the performance of a CO2 heat pump with that of a propane (R-290) heat pump for a commercial swimming pool application. The study is performed using a simulation model created using Microsoft Excel Sheets and Cool Prop add-in, a thermophysical property database. The simulation model makes use of formulae of heat pumps to analyse the performance of the heat pump systems. The climatic data for Stockholm is taken from ASHRAE IWEC 2 database. The results of the study show advantages of CO2 heat pumps when used for combined purposes like space heating, space cooling and domestic hot water over the heat pumps using other refrigerants for their operation, as these refrigerants when operated at high condensation temperature led to low Coefficient of Performance (COP). The first study on residential building CO2 heat pumps showed a cost savings of about 116,000 kr per year even in high-pressure operations concerning the annual cost of district heating, which is about 30% of the total cost district heating with auxiliary equipment. The study also examined the energy saving over the usage of an ejector used in the heat pump which reached an average energy saving of 8%. The second study shows the dominance of the performance of CO2 over other refrigerants for district heating purposes. The third study indicates the performance of the CO2 heat pump in the application using real-time measure data. The fourth study illustrates an increase in overall COP of about 10% from the CO2 heat pump in comparison to that of propane refrigerant for swimming pool application. These results show that when the domestic hot water demand is higher, the CO2 heat pump performs better than other refrigerants specifically because the COP of other refrigerants is lower at high condensation temperatures. / Denna studie fokuserar på att undersöka prestandan hos CO2-värmepumpar i olika realtidsapplikationer och i vissa studier jämför den prestandan med syntetiska och andra naturliga köldmedier baserat på värmepumpsdata från byggnader. Forskningen kring CO2-värmepumpens prestanda utförs utifrån Sveriges klimatförhållanden. Studien består av fyra olika fallstudier som var och en fokuserar på CO2-värmepumpen som används för fyra olika byggnader. Den första studien utvärderar prestandan hos luftkällans CO2-värmepump installerad i ett bostadshus och ger kostnadsfördelar jämfört med energiförbrukningen för fjärrvärme. Den andra studien undersöker prestandan hos luftkällans CO2-värmepump för fjärrvärmeapplikationen och jämför densamma med andra köldmedievärmepumpar. Köldmedierna jämfört med inkluderar ammoniak (R-717), propan (R-290), R-134a (1,1,1,2-tetrafluoretan). Den tredje studien undersöker prestandan hos luftkällans CO2-värmepumpar i en kommersiell byggnad med fältuppmätta data som erhålls direkt från värmepumpens sensorer via onlineportalen "itop". Den fjärde studien analyserar prestandan hos en CO2-värmepump med den hos en propan (R-290) värmepump för en kommersiell simbassängapplikation. Studien utförs med hjälp av en simuleringsmodell skapad med Microsoft Excel Sheets och Cool Prop-tillägget, en termofysisk egenskapsdatabas. Simuleringsmodellen använder formler för värmepumpar för att analysera värmepumpsystemens prestanda. Klimatdata för Stockholm är hämtade från databasen ASHRAE IWEC 2. Resultaten av studien visar fördelarna med CO2-värmepumpar när de används för kombinerade ändamål som rumsuppvärmning, rumskylning och tappvarmvatten jämfört med värmepumpar som använder andra köldmedier för sin drift, eftersom dessa köldmedier när de används vid hög kondensationstemperatur ledde till låg koefficient prestanda (COP). Den första studien om bostadshus CO2-värmepumpar visade en kostnadsbesparing på cirka 116 000 kr per år även i högtrycksdrift avseende den årliga kostnaden för fjärrvärme, vilket är cirka 30 % av den totala kostnaden för fjärrvärme med hjälputrustning. Studien undersökte också energibesparingen jämfört med användningen av en ejektor som används i värmepumpen som nådde en genomsnittlig energibesparing på 8 %. Den andra studien visar dominansen av CO2s prestanda över andra köldmedier för fjärrvärmeändamål. Den tredje studien indikerar CO2-värmepumpens prestanda i applikationen med hjälp av mätdata i realtid. Den fjärde studien illustrerar en ökning av den totala COP på cirka 10 % från CO2-värmepumpen jämfört med den för propan-köldmedium för simbassängapplikationer. Dessa resultat visar att när efterfrågan på tappvarmvatten är högre presterar CO2-värmepumpen bättre än andra köldmedier, särskilt eftersom COP för andra köldmedier är lägre vid höga kondensationstemperaturer.
|
9 |
Exploring Capabilities of Electrical Capacitance Tomography Sensor & Velocity Analysis of Two-Phase R-134a Flow Through a Sudden ExpansionCronin, Joseph M. 09 June 2017 (has links)
No description available.
|
10 |
Development Of An Activated Carbon+ HFC 134a Adsorption Refrigeration SystemNitinkumar, D Banker 12 1900 (has links)
The demands facing the refrigeration industry are minimal usage of conventional energy sources for compression and avoidance of ozone depleting substances. One of the approaches to combat these issues is the use of thermally driven solid sorption compression with non-ozone depleting refrigerant. In this context, the research work presented in this thesis is devoted to a comprehensive thermodynamic analysis and development of a laboratory model of an activated carbon+ HFC 134a adsorption refrigeration system. The cooling load catered to by the laboratory model is 2-5 W, mainly for thermal management of electronics.
A complete thermodynamic analysis is carried out for the desorption temperatures varying from 75 to 90 oC, evaporating temperatures from -20 to 15oC and adsorption/condensing temperatures from 25 to 40 oC. A program on MatLab platform is developed for theoretical modeling. A new concept of thermal compression uptake efficiency (u) which is analogous to volumetric efficiency of a positive displacement compressor is introduced to consider the effect of void volume. The thesis also covers an investigation of two-stage and hybrid (thermal+ mechanical) cycle compression systems. It is possible to identify the conditions under which a two-stage gives a better performance than a single-stage one. It also shows that hybrid cycle system gives the best performance and saves ~40% of power compared to operation under the same conditions run with a single-stage mechanical compression refrigeration system.
A heat transfer analysis of the thermal compressor is carried out to evaluate non-uniformities in bed temperature. As a part of it, the thermal conductivity of the bed under adsorbed state has been calculated.
A laboratory model of activated carbon+ HFC 134a adsorption refrigeration system is fabricated to meet a 2-5 Watts cooling load based on the results from theoretical calculations. Experimental results show a fair match in the trends for the COP with analysis. The main aim of the research was to examine how effective the adsorption refrigeration system is in reducing the temperature rise of the heater used to simulate the electronic component. The heater that would have stabilized at 81, 97, 103 and 112 oC without any cooling for heat inputs of 3, 4, 4.4 and 4.9 W, respectively, would attain a cyclic steady state around 24, 26, 28, 31 oC. The influence of cycle time on the performance of the systems is also investigated.
It is concluded that an activated carbon+ HFC 134a adsorption refrigeration system can be a good supplement to conventional compression refrigeration systems. In situations where heat recovery imminent this system could be a good choice. For waste heat recovery and suppression of infrared signatures of electronic components, it is ideally suited where COP becomes immaterial.
|
Page generated in 0.1204 seconds