• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

1H NMR spectroscopic elucidation in solution of the kinetics and thermodynamics of spin crossover for an exceptionally robust Fe2+ complex

Petzold, Holm, Djomgoue, Paul, Hörner, Gerald, Speck, J. Matthäus, Rüffer, Tobias, Schaarschmidt, Dieter 15 September 2016 (has links) (PDF)
A series of Fe2+ spin crossover (SCO) complexes [Fe(5/6)]2+ employing hexadentate ligands (5/6) with cis/trans-1,2-diamino cyclohexanes (4) as central building blocks were synthesised. The ligands were obtained by reductive amination of 4 with 2,2′-bipyridyl-6-carbaldehyde or 1,10-phenanthroline-2-carbaldehyde 3. The chelating effect and the rigid structure of the ligands 5/6 lead to exceptionally robust Fe2+ and Zn2+ complexes conserving their structure even in coordinating solvents like dmso at high temperatures. Their solution behavior was investigated using variable temperature (VT) 1H NMR spectroscopy and VT Vis spectroscopy. SCO behavior was found for all Fe2+ complexes in this series centred around and far above room temperature. For the first time we have demonstrated that the thermodynamics as well as kinetics for SCO can be deduced by using VT 1H NMR spectroscopy. An alternative scheme using a linear correction term C1 to model chemical shifts for Fe2+ SCO complexes is presented. The rate constant for the SCO of [Fe(rac-trans-5)]2+ obtained by VT 1H NMR was validated by Laser Flash Photolysis (LFP), with excellent agreement (1/(kHL + kLH) = 33.7/35.8 ns for NMR/LFP). The solvent dependence of the transition temperature T1/2 and the solvatochromism of complex [Fe(rac-trans-5)]2+ were ascribed to hydrogen bond formation of the secondary amine to the solvent. Enantiomerically pure complexes can be prepared starting with R,R- or S,S-1,2-diaminocyclohexane (R,R-trans-4 or S,S-trans-4). The high robustness of the complexes reduces a possible ligand scrambling and allows preparation of quasiracemic crystals of [Zn(R,R-5)][Fe(S,S-5)](ClO4)4·(CH3CN) composed of a 1 : 1 mixture of the Zn and Fe complexes with inverse chirality. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
2

1H NMR spectroscopic elucidation in solution of the kinetics and thermodynamics of spin crossover for an exceptionally robust Fe2+ complex

Petzold, Holm, Djomgoue, Paul, Hörner, Gerald, Speck, J. Matthäus, Rüffer, Tobias, Schaarschmidt, Dieter 15 September 2016 (has links)
A series of Fe2+ spin crossover (SCO) complexes [Fe(5/6)]2+ employing hexadentate ligands (5/6) with cis/trans-1,2-diamino cyclohexanes (4) as central building blocks were synthesised. The ligands were obtained by reductive amination of 4 with 2,2′-bipyridyl-6-carbaldehyde or 1,10-phenanthroline-2-carbaldehyde 3. The chelating effect and the rigid structure of the ligands 5/6 lead to exceptionally robust Fe2+ and Zn2+ complexes conserving their structure even in coordinating solvents like dmso at high temperatures. Their solution behavior was investigated using variable temperature (VT) 1H NMR spectroscopy and VT Vis spectroscopy. SCO behavior was found for all Fe2+ complexes in this series centred around and far above room temperature. For the first time we have demonstrated that the thermodynamics as well as kinetics for SCO can be deduced by using VT 1H NMR spectroscopy. An alternative scheme using a linear correction term C1 to model chemical shifts for Fe2+ SCO complexes is presented. The rate constant for the SCO of [Fe(rac-trans-5)]2+ obtained by VT 1H NMR was validated by Laser Flash Photolysis (LFP), with excellent agreement (1/(kHL + kLH) = 33.7/35.8 ns for NMR/LFP). The solvent dependence of the transition temperature T1/2 and the solvatochromism of complex [Fe(rac-trans-5)]2+ were ascribed to hydrogen bond formation of the secondary amine to the solvent. Enantiomerically pure complexes can be prepared starting with R,R- or S,S-1,2-diaminocyclohexane (R,R-trans-4 or S,S-trans-4). The high robustness of the complexes reduces a possible ligand scrambling and allows preparation of quasiracemic crystals of [Zn(R,R-5)][Fe(S,S-5)](ClO4)4·(CH3CN) composed of a 1 : 1 mixture of the Zn and Fe complexes with inverse chirality. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
3

SYNTHESIS AND VISCOELASTIC PROPERTIES OF GELS OBTAINED FROM LINEAR AND BRANCHED POLYMERS

Debnath, Dibyendu, Debnath 24 May 2018 (has links)
No description available.
4

SYNTHESIS AND VISCOELASTIC PROPERTIES OF GELS OBTAINED FROM LINEAR AND BRANCHED POLYMERS

Debnath, Dibyendu 24 May 2018 (has links)
No description available.
5

THE SYNTHESES, CHARACTERIZATIONS, & STRATEGIES OF HIGH-VALUE, DIVERSE, ORGANIC COMPOUNDS

Caesar D Gomez (16650408) 27 July 2023 (has links)
<p>  </p> <p>Organic synthesis is the application of one or more reactions to the preparation of a particular target molecule, and can pertain to a single-step transformation or to a number of sequential chemical steps depicted by a scheme overall. The selection of a reaction or series of reactions while considering chemo-, regio-, and stereoselectivities in addition to protecting group strategies & redox manipulations highlights the complexity in designing & executing a synthetic plan while making a judgement about what is the most effective and efficient plan to synthesize any given chemical compound among numerous available options. To this end, chemical synthesis is the unifying theme of this thesis & was utilized and strategically applied to construct increasingly complex and diverse molecular architectures. </p> <p>Being the precise science that organic chemistry is, this discipline extends into many areas such as technology, biology & medicine, and even into the fine arts since it fosters unparalleled creativity and imagination in its practice. Research foci in chemical synthesis can encompass both the discovery and development of powerful reactions and the invention of strategies for the construction of defined target molecules, natural or man-made, more or less complex. Studies in the former area, synthetic methodology, fuel and enable studies in the latter area, target molecule and total synthesis campaigns, where the latter area offers a testing ground for the former. Consequently, the bulk of this research work is in organic methodology and will be covered in greater depth during chapters 2 and 3 where strategies, optimizations, & analyses are elaborated upon in light of searching & navigating the vast body of chemical literature in an effort to broaden and strengthen one's laboratory expertise as a synthetic chemist. Lastly, chapter 4 focuses not on traditional synthesis but on organic structure analysis relying on various techniques such as nuclear magnetic resonance (NMR), infrared (IR), ultraviolet-visible (UV-Vis) spectroscopy in combination with mass spectrometry (MS) and/or X-ray crystallography to hypothesize and confirm established structures, specifically phenolic oligomers. An ability to use spectroscopic data to evaluate organic structures by combining practical experience with fundamental knowledge will serve as a hallmark skill in one’s ability to problem-solve as an organic chemist.</p>

Page generated in 0.0676 seconds