• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of aestivation on the musculo-skeletal system of the green striped burrowing frog, Cyclorana alboguttata

Hudson, N. J. Unknown Date (has links)
No description available.
2

Diving physiological ecology of the bimodally respiring freshwater turtle Rheodytes leukops.

Gordos, M. A. Unknown Date (has links)
No description available.
3

Phylogeny, morphology and physiology of the secondary vascular system in fishes

Skov, Peter Vilhelm Unknown Date (has links)
No description available.
4

Diving physiological ecology of the bimodally respiring freshwater turtle Rheodytes leukops.

Gordos, M. A. Unknown Date (has links)
No description available.
5

Energetics and foraging behaviour of the Platypus Ornithorhynchus anatinus

Bethge, P January 2002 (has links) (PDF)
In this work, behavioural field studies and metabolic studies in the laboratory were conducted to elucidate the extent of adaptation of the platypus Ornithorhynchus anatinus to its highly specialised semiaquatic lifestyle. Energy requirements of platypuses foraging, resting and walking were measured in a swim tank and on a conventional treadmill using flow-through respirometry. Foraging behaviour and activity pattern of platypuses in the wild were investigated at a sub-alpine Tasmanian lake where individuals were equipped with combined data-logger-transmitter packages measuring foraging activity or dive depth and ambient temperature. Energy requirements while foraging in the laboratory were found to depend on water temperature, body mass and dive duration and averaged 8.48 W kg-1. Mean rate for subsurface swimming was 6.71 W kg-1. Minimum cost of transport for subsurface swimming platypuses was 1.85 J N-1m-1 at a speed of 0.4 m s-1. The metabolic rate of platypuses resting on the water surface was 3.91 W kg-1 while minimal RMR on land was 2.08 W kg-1. The metabolic rate for walking was 8.80 and 10.56 W kg-1 at speeds of 0.2 and 0.3 m s-1, respectively. Minimal cost of transport for walking was predicted to be 2.13 J N-1m-1 at a speed of 1.7 m s-1. A formula was derived, which allows prediction of power requirements of platypuses in the wild from measurements of body mass, dive duration and water temperature. Activity patterns of platypuses in the wild were highly variable. Forty percent of the platypuses studied showed patterns, which deviated considerably from the nocturnal pattern generally reported for the species. Some animals showed diurnal rhythms while others temporarily followed the lunar cycle. Foraging trips lasted for an average of 12.4 h of continuous foraging activity per day (maximum: 29.8 hours). There were significant differences in diving behaviour between sexes and seasons. Activity levels were highest between August and November and lowest in January. While foraging, platypuses followed a model of optimised recovery time, the optimal breathing theory. Mean dive duration was 31.3 seconds with 72 % Energetics and foraging behaviour of the platypus 6 of all dives lasting between 18 and 40 seconds. Mean surface duration was 10.1 seconds. Mean dive depth was 1.28 m with a maximum of 8.77 m. Up to 1600 dives per foraging trip with a mean of 75 dives per hour were performed. Only 15 % of all dives were found to exceed the estimated aerobic dive limit of 40 seconds indicating mainly aerobic diving in the species. Total bottom duration per day was proposed as a useful indicator of foraging efficiency and hence habitat quality in the species. In contrast to observations made earlier in rivers, temporal separation was found to play a vital role for social organisation of platypuses in the lake system that was investigated. It is suggested that high intra-specific competition as well as limited burrow sites and a limited number of at the same time highly productive foraging locations were responsible for this observation. Mean burrow temperature in the wild was 17.5 and 14.2ºC in summer and winter, respectively, and was fairly constant over the platypus's resting period. In the cooler months, burrow temperature was up to 18ºC higher than ambient air temperature. By combining both field and laboratory data, a time-energy budget for the platypus was created. Mean field metabolic rate was 684 kJ kg-1 day-1 and was significantly higher in the winter months. Mean food requirement was 132 g fresh matter kg-1 day-1. Feeding rates were 68 % higher in winter than in summer. While platypuses in the swim tank were found to expend energy at only half the rate of semiaquatic eutherians of comparable body size, cost of transport at optimal speed as well as field metabolic rates were in line with findings for eutherians. These patterns suggest that locomotor efficiency of semiaquatic mammals might have reached a limit for energetic optimisation. The semiaquatic lifestyle seems to pose comparable energetic hurdles for mammals regardless of their phylogenetic origin.
6

Steroids and Reproductive Biology in the Blotched Blue-tongued Lizard, Tiliqua nigrolutea

Edwards, A January 2000 (has links) (PDF)
This thesis documents the annual profiles of the primary reproductive steroids testosterone (T), 17beta-oestradiol (E2) and progesterone (P4), in the reproductive cycles of male and female blue-tongued lizards, Tiliqua nigrolutea. Data collected from a large captive population over three consecutive reproductive seasons are included. Reproductive cycles are discussed in the context of other viviparous squamate reptiles, while a broader comparative approach is used to consider patterns of steroid biosynthesis and peripheral metabolism. The annual patterns of circulating concentrations of T, E2 and P4 have been characterised for both sexes. In males, peak plasma T (10.9 +/- 3.00 ng ml-1) and E2 (778.0 +/- 120.00 pg ml-1) concentrations occur coincident with late spermatogenesis and observations of mating, respectively. Plasma P4 concentrations remain basal (< 1.2 ng ml-1) throughout the annual reproductive cycle. In females, increasing plasma E2 concentrations (275.2 +/- 33.87 pg ml-1 - 715.1 +/- 106.68 pg ml-1) are associated with vitellogenesis and plasma T peaks (6.3 +/- 0.63 ng ml-1) in the mating and peri-ovulatory period. In pregnant females, plasma P4 concentrations are elevated for the first two thirds of gestation, peaking in the second trimester at 12.7 +/- 1.27 ng ml-1 and falling rapidly prior to parturition. Concurrently, plasma P4 concentrations in non-reproductively active adult females remain basal (1 - 2 ng ml-1) throughout the year. There is good circumstantial evidence for a multiennial reproductive cycle in females. Parturition occurs late in the active season, presumably leaving little time for females to store sufficient fat reserves to become vitellogenic in the following spring: reproductive opportunities are effectively missed in at least one year following a reproductive effort. Observed reproductive behaviours, including agonistic male - male interactions, mating, and parturition, are documented. An investigation of gonadal steroid biosynthetic pathways in this viviparous squamate is presented. This compares variation in the relative contributions of the delta-4 and delta-5 steroidogenic pathways according to sex and reproductive condition. The delta-4 pathway predominates in both sexes, aligning this species phylogenetically with other reptiles. However, there are clear differences between sexes and with changing reproductive condition in the patterns of production of pathway intermediates and end-products. Additionally, detection of a possibly novel polar steroid as a major end-product of steroid biosynthesis in both sexes is reported. Peripheral (extragonadal) metabolism of T and E2 in a number of reproductively relevant steroid target tissues is compared at times of year chosen to represent three clearly distinctive reproductive conditions in each sex. There are differences both between sexes, between tissue types and with changing reproductive condition in the relative proportions of steroid conjugates and non-conjugated derivatives produced. Biosynthetic pathway activity and peripheral steroid metabolism both appear to be plastic in response to changing reproductive condition in Tiliqua nigrolutea. With a comprehensive database of information about the reproductive endocrinology and physiology of Tiliqua nigrolutea, this species is now available as a model to further examine selected aspects of the steroid hormone control of reproductive physiology and behaviour in a cool temperate, viviparous reptile.
7

Neurological development and the potential for conscious perception after birth : comparison between species and implications for animal welfare : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physiology, Massey University, Palmerston North, New Zealand

Diesch, Tamara Johanna January 2010 (has links)
In order for animals to experience pain and to suffer from it, they have to be capable of conscious perception. Recent evidence suggests that the fetus is maintained in a sleeplike unconscious state and that conscious perception therefore only occurs after birth. The timing of the onset of conscious perception depends on the maturation of underlying neurological processes and is anticipated to be species dependent. Painspecific electroencephalographic (EEG) responses of lightly anaesthetised young of three species born at different levels of neurological development were investigated. The results of the present thesis are in agreement with published data on general neurological, EEG and behavioural development. This information, in addition to the present results, has been used to estimate the approximate time of the onset of conscious perception in tammar wallaby joeys, rat pups and newborn lambs. In wallaby joeys (extremely immature at birth), the EEG remained isoelectric until about 100-120 days of in-pouch age and became continuous by about 150-160 days, with electroencephalographic and behavioural signs of conscious perception apparent by about 160-180 days. In rat pups (immature at birth), the absence of a differentiated EEG suggests that the ability for conscious perception in pups younger than 10-12 days is doubtful. The marginal EEG responses to noxious stimulation in 12-14 day-old pups and the pronounced EEG responses in pups 18-20 days suggest that rats may be capable of conscious perception from 12-14 days onwards. In lambs (mature at birth), full conscious perception is probably not apparent before 5 minutes after birth and may take up to several hours or days to become fully established. Its modulation by the residual neuroinhibitor allopregnanolone, if that occurs, would be highest over the first 12 hours after birth. Overall, the onset of conscious perception does not seem to follow an “on-off phenomenon”, but seems to develop gradually, even in species born neurologically mature. Although conscious perception, and hence pain experience, may be qualitatively different in younger animals, on the basis of the precautionary principle, when significantly invasive procedures are planned, pain relief should be provided from those postnatal ages when pain may first be perceived – i.e. from about 120 days in the tammar wallaby joey, about 10 days in the rat pup and from soon after birth in the lamb.
8

Phylogeny, morphology and physiology of the secondary vascular system in fishes

Skov, Peter Vilhelm Unknown Date (has links)
Vascular casts of three chondrichthian, one dipnoan, one chondrostean and 14 teleostean species were examined by light and scanning electron microscopy in order to give a qualitative and quantitative analysis of interarterial anastomoses (iaas) that indicate the presence (or absence) of a secondary vascular system (SVS). Anastomoses were found to originate from a variety of different primary blood vessels, many of which have not been previously identified as giving rise to secondary vessels. Segmental arteries derived from the dorsal aorta and supplying body musculature were major sites of origin of the SVS, although there was considerable variation in where, in the hierarchy of arterial branching, the anastomoses occurred. The degree of investment in a SVS was species specific, with more active species having a higher degree of secondary vascularisation. This difference was quantified using an absolute count of iaas between Anguilla reinhardtii and Trachinotus baillonii. A range of general features of the SVS is also described. No evidence of iaas was found on the coeliac, mesenteric or renal circulation in any species. Evidence of interarterial anastomoses were lacking in the dipnoan (Sarcopterygii) and chondrichthyan species examined, suggesting that a SVS is restricted to actinopterygian fishes. The presence and distribution of a secondary vascular system does not appear to be exclusively linked to phylogenetic position, but rather to the physiological adaptation of the species. Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel, Anguilla reinhardtii, were examined by light and transmission electron microscopy. Secondary vessels were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to re-anastomose with a secondary vessel running in parallel with the primary counterpart. Secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, surrounded by single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these were more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it was anticipated that flow through secondary vessels would to some extent be affected by an increase in primary vascular tone. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. Secondary vessels were followed to the surface of the animal through consecutive sections, where they eventually give rise to capillary beds overlying the scales. Secondary capillary beds were found to supply chloride cells in the skin, suggesting that this vascular system may be involved in cutaneous ionic exchange. Branchial vascular casts from two species of Tetraodontiformes showed that the vessels previously reported as nutrient vessels are with certainty part of the secondary vascular system. In the three-barred porcupine fish, Dicotylichthys punctulatus, interarterial anastomoses originated at high densities from efferent filamental and the efferent branchial arteries, from where they formed progressively larger secondary vessels. Small branches of this vascular system entered the filament body, where it gave rise to numerous side-vessels along the way. Large secondary vessels running in parallel with the efferent branchial arteries were found to constitute an additional arterio-arterial pathway, in that they exited the branchial basket in company with the afferent mandibular artery, the carotid artery and the efferent branchial arteries, from where they gave rise to vascular beds immediately after exit. The secondary vessels in this species were not found to supply the filament musculature; rather this vascular system was supplied by a single vessel derived from the efferent branchial artery, running in parallel with the afferent branchial artery. Secondary vessels were not found on any branchial component in the banded toadfish, Marylina pleurosticta, but in all other aspects the branchial vascular anatomy was similar to that of D. punctulatus. It is proposed that four independent vascular pathways may be present in the teleostean gill. The blood volume and flow rates of the primary (PVS) and secondary vascular system (SVS) were examined in the catadromous euryhaline teleost Lates calcarifer in order to determine whether any of these parameters were subject to change in individuals acclimated to seawater, compared to a group acclimated to freshwater. There was no significant difference in any measured parameter for the two groups. The volumes of the SVS were 0.67 „b 0.13 and 0.76 „b 0.13 mL 100g-1 body mass for FW and SW acclimated animals respectively. This constituted approximately one-third of the total blood volume in both groups. Turnover times for the SVS ranged from 21.0 to 25.2 minutes, demonstrating in accordance with previous publications, that this system is considerably more dynamic than previously assumed.
9

Phylogeny, morphology and physiology of the secondary vascular system in fishes

Skov, Peter Vilhelm Unknown Date (has links)
Vascular casts of three chondrichthian, one dipnoan, one chondrostean and 14 teleostean species were examined by light and scanning electron microscopy in order to give a qualitative and quantitative analysis of interarterial anastomoses (iaas) that indicate the presence (or absence) of a secondary vascular system (SVS). Anastomoses were found to originate from a variety of different primary blood vessels, many of which have not been previously identified as giving rise to secondary vessels. Segmental arteries derived from the dorsal aorta and supplying body musculature were major sites of origin of the SVS, although there was considerable variation in where, in the hierarchy of arterial branching, the anastomoses occurred. The degree of investment in a SVS was species specific, with more active species having a higher degree of secondary vascularisation. This difference was quantified using an absolute count of iaas between Anguilla reinhardtii and Trachinotus baillonii. A range of general features of the SVS is also described. No evidence of iaas was found on the coeliac, mesenteric or renal circulation in any species. Evidence of interarterial anastomoses were lacking in the dipnoan (Sarcopterygii) and chondrichthyan species examined, suggesting that a SVS is restricted to actinopterygian fishes. The presence and distribution of a secondary vascular system does not appear to be exclusively linked to phylogenetic position, but rather to the physiological adaptation of the species. Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel, Anguilla reinhardtii, were examined by light and transmission electron microscopy. Secondary vessels were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to re-anastomose with a secondary vessel running in parallel with the primary counterpart. Secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, surrounded by single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these were more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it was anticipated that flow through secondary vessels would to some extent be affected by an increase in primary vascular tone. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. Secondary vessels were followed to the surface of the animal through consecutive sections, where they eventually give rise to capillary beds overlying the scales. Secondary capillary beds were found to supply chloride cells in the skin, suggesting that this vascular system may be involved in cutaneous ionic exchange. Branchial vascular casts from two species of Tetraodontiformes showed that the vessels previously reported as nutrient vessels are with certainty part of the secondary vascular system. In the three-barred porcupine fish, Dicotylichthys punctulatus, interarterial anastomoses originated at high densities from efferent filamental and the efferent branchial arteries, from where they formed progressively larger secondary vessels. Small branches of this vascular system entered the filament body, where it gave rise to numerous side-vessels along the way. Large secondary vessels running in parallel with the efferent branchial arteries were found to constitute an additional arterio-arterial pathway, in that they exited the branchial basket in company with the afferent mandibular artery, the carotid artery and the efferent branchial arteries, from where they gave rise to vascular beds immediately after exit. The secondary vessels in this species were not found to supply the filament musculature; rather this vascular system was supplied by a single vessel derived from the efferent branchial artery, running in parallel with the afferent branchial artery. Secondary vessels were not found on any branchial component in the banded toadfish, Marylina pleurosticta, but in all other aspects the branchial vascular anatomy was similar to that of D. punctulatus. It is proposed that four independent vascular pathways may be present in the teleostean gill. The blood volume and flow rates of the primary (PVS) and secondary vascular system (SVS) were examined in the catadromous euryhaline teleost Lates calcarifer in order to determine whether any of these parameters were subject to change in individuals acclimated to seawater, compared to a group acclimated to freshwater. There was no significant difference in any measured parameter for the two groups. The volumes of the SVS were 0.67 „b 0.13 and 0.76 „b 0.13 mL 100g-1 body mass for FW and SW acclimated animals respectively. This constituted approximately one-third of the total blood volume in both groups. Turnover times for the SVS ranged from 21.0 to 25.2 minutes, demonstrating in accordance with previous publications, that this system is considerably more dynamic than previously assumed.
10

Phylogeny, morphology and physiology of the secondary vascular system in fishes

Skov, Peter Vilhelm Unknown Date (has links)
Vascular casts of three chondrichthian, one dipnoan, one chondrostean and 14 teleostean species were examined by light and scanning electron microscopy in order to give a qualitative and quantitative analysis of interarterial anastomoses (iaas) that indicate the presence (or absence) of a secondary vascular system (SVS). Anastomoses were found to originate from a variety of different primary blood vessels, many of which have not been previously identified as giving rise to secondary vessels. Segmental arteries derived from the dorsal aorta and supplying body musculature were major sites of origin of the SVS, although there was considerable variation in where, in the hierarchy of arterial branching, the anastomoses occurred. The degree of investment in a SVS was species specific, with more active species having a higher degree of secondary vascularisation. This difference was quantified using an absolute count of iaas between Anguilla reinhardtii and Trachinotus baillonii. A range of general features of the SVS is also described. No evidence of iaas was found on the coeliac, mesenteric or renal circulation in any species. Evidence of interarterial anastomoses were lacking in the dipnoan (Sarcopterygii) and chondrichthyan species examined, suggesting that a SVS is restricted to actinopterygian fishes. The presence and distribution of a secondary vascular system does not appear to be exclusively linked to phylogenetic position, but rather to the physiological adaptation of the species. Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel, Anguilla reinhardtii, were examined by light and transmission electron microscopy. Secondary vessels were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to re-anastomose with a secondary vessel running in parallel with the primary counterpart. Secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, surrounded by single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these were more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it was anticipated that flow through secondary vessels would to some extent be affected by an increase in primary vascular tone. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. Secondary vessels were followed to the surface of the animal through consecutive sections, where they eventually give rise to capillary beds overlying the scales. Secondary capillary beds were found to supply chloride cells in the skin, suggesting that this vascular system may be involved in cutaneous ionic exchange. Branchial vascular casts from two species of Tetraodontiformes showed that the vessels previously reported as nutrient vessels are with certainty part of the secondary vascular system. In the three-barred porcupine fish, Dicotylichthys punctulatus, interarterial anastomoses originated at high densities from efferent filamental and the efferent branchial arteries, from where they formed progressively larger secondary vessels. Small branches of this vascular system entered the filament body, where it gave rise to numerous side-vessels along the way. Large secondary vessels running in parallel with the efferent branchial arteries were found to constitute an additional arterio-arterial pathway, in that they exited the branchial basket in company with the afferent mandibular artery, the carotid artery and the efferent branchial arteries, from where they gave rise to vascular beds immediately after exit. The secondary vessels in this species were not found to supply the filament musculature; rather this vascular system was supplied by a single vessel derived from the efferent branchial artery, running in parallel with the afferent branchial artery. Secondary vessels were not found on any branchial component in the banded toadfish, Marylina pleurosticta, but in all other aspects the branchial vascular anatomy was similar to that of D. punctulatus. It is proposed that four independent vascular pathways may be present in the teleostean gill. The blood volume and flow rates of the primary (PVS) and secondary vascular system (SVS) were examined in the catadromous euryhaline teleost Lates calcarifer in order to determine whether any of these parameters were subject to change in individuals acclimated to seawater, compared to a group acclimated to freshwater. There was no significant difference in any measured parameter for the two groups. The volumes of the SVS were 0.67 „b 0.13 and 0.76 „b 0.13 mL 100g-1 body mass for FW and SW acclimated animals respectively. This constituted approximately one-third of the total blood volume in both groups. Turnover times for the SVS ranged from 21.0 to 25.2 minutes, demonstrating in accordance with previous publications, that this system is considerably more dynamic than previously assumed.

Page generated in 0.0944 seconds