• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 9
  • 9
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beads

Muchindu, Munkombwe January 2010 (has links)
Philosophiae Doctor - PhD / Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate ((PSNP-OSO3) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 −) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10−8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were <100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 μA/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 μM NO2 −, were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 −; respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors. / South Africa
12

Identification of differentially expressed proteins in obese rats fed different high fat diets using proteomics and bioinformatics approaches

Gabuza, Kwazikwakhe January 2013 (has links)
Philosophiae Doctor - PhD / Obesity is a medical condition in which an energy imbalance leads to excessive accumulation of body fat. Obesity leads to a reduction in life expectancy through its association with chronic diseases of lifestyle. The prevalence of obesity is rapidly increasing throughout the world. It is now accepted that most cases of obesity result from an interaction between genetic and environmental factors. This rapid increase in obesity generally leads to an increase in morbidity and mortality from chronic diseases such as cardiovascular disease, type 2 diabetes, osteoarthritis and cancer of which obesity is a risk factor. There is a lack of information in molecular research to explain how obesity predisposes individuals to these diseases. Proteomics is a molecular tool and a set of techniques used to identify changes at protein level from a diseased state. This study aims to identify differentially expressed proteins in serum of obese rats fed different isocaloric diets using proteomics.
13

Discovery and characterization of a novel family of human ubiquitin ligases termed Membrane Associated RING-CH (MARCH) proteins

Bartee, Eric Carter 06 1900 (has links) (PDF)
Ph.D. / Molecular Microbiology and Immunology / Both poxviruses and γ2-herpesviruses share the K3-family of viral immune evasion proteins. These proteins are characterized by an amino-terminal RING-CH domain followed by two transmembrane domains. We analyzed several human homologues of the K3-family termed membrane-associated RING-CH (MARCH) proteins. All MARCH proteins localized to subcellular membranes while several reduced surface levels of known K3-family substrates. Thus, MARCH proteins appear to be structurally and functionally homologous to viral K3 proteins. One of the major challenges in determining the function of this family is the identification of their physiological substrates. To overcome this we created a quantitative proteomics approach which can be used to identify novel substrates for both the K3- and MARCH-families. Using stable isotope labeling by amino acids in cell culture, we compared the proteome of plasma membrane, golgi, and endoplasmic reticulum membranes in the presence and absence of K5 and MARCH-VIII. Quantitative mass spectrometric protein identification from these fractions revealed that CD316 (bone marrow stromal antigen 2), CD166 (activated leukocyte cell adhesion molecule) and syntaxin-4 were consistently underrepresented in the plasma membrane of K5 expressing cells, while CD44, CD81 (TAPA-1) and B-cell receptor-associated protein 31kDa (Bap31) were consistently underrepresented in the plasma membrane of MARCH-VIII expressing cells. Furthermore, downregulation of each of these proteins was independently confirmed. Our results both identify and characterize a novel family of human ubiquitin ligase enzymes and elucidate a novel technique which can analyze this family and be easily adapted to the analysis of other cellular enzymes viral immune modulators.
14

Změny proteinového profilu v průběhu sladování ječmene / Changes of protein profile in barley during malting

Šopíková, Martina January 2008 (has links)
This diploma thesis is focused on studies of changing of protein profile during barley malting. Substantial part of this work is devoted to the proteomics identification of barley proteins which change during malting and so become more stationary and they influence quality of beer (haze and foam in beer). For this experiment was used barley variety Jersey. In the theoretical part of this thesis there is information about beer, manufacturing of beer with description of important commodities for manufacturing of beer and information about barley malting and information about malting process. Next there is description of methods for separation of proteins (1D gel electrophoresis and 2D gel electrophoresis), MALDI TOF/TOF mass spectrometry and this use for the analysis and identification of proteins, the use of matrices and ways of the sample preparation. In the experimental part of this thesis there was carried out the optimisation of the dosage of sample for 1D gel electrophoresis and the optimisation of staining. The 15 % TRIS-HCl gel was the best, this gel was stained by Commassie Brilliant Blue G-250. For illustration of changes was made 2D gel electrophoresis. With help of method peptide mass fingerprinting and MS/MS protein of barley – protein Z, -amylase subtilisin inhibitor, -amylase a peroxidase were identificated. The analysis of barley extract intact proteins was carried out, this analysis was focused on changes of important barley protein LTP 1.
15

L-FABP und H-FABP als neue prognostische Biomarker für den Beginn einer Nierenersatztherapie im Falle eines akuten Nierenversagens / L-FABP and H-FABP as new prognostic biomarker for the initiation of renal replacement therapy in case of acute kidney injury

Datta, Rabi Raj 14 March 2012 (has links)
No description available.
16

Stress response in the cyanobacterium Synechocystis sp. PCC 6803

Miranda, Helder January 2011 (has links)
Adaptation to environmental changes is important for the survival of living organisms. Under extreme abiotic conditions, organic molecules (such as lipids, proteins and nucleic acids) are prone to damage. Under these conditions stress response mechanisms are activated, either to prevent the source of damage or to promote the rapid turnover of damaged molecules. Like all photoautotrophic organisms, cyanobacteria are sensitive to high light intensity and oxidative stress, which induces damage to the photosynthetic apparatus. My thesis is divided in two subjects related to particular stress responses in the cyanobacterium Synechocystis sp. PCC 6803: 1) the role of Deg/HtrA proteases and 2) investigations on the small CAB-like proteins. Deg/HtrA proteases are ATP-independent serine endopeptidases with a characteristic C-terminal PDZ domain. These proteases are largely dispersed among living organisms, with many different functions, mostly involved in protein quality control. The genome of Synechocystis sp. PCC 6803 contains three genes coding for Deg/HtrA proteases: HtrA, HhoA and HhoB. These proteases are essential for survival under high light and heat stress, and may overlap in their functions. During my Ph.D. studies I focused on the identification of the precise localization of the Deg/HtrA proteases in the cyanobacterial cell, analyzed the biochemical properties of recombinant Synechocystis Deg/HtrA proteases in vitro and adopted proteomic and metabolomic approaches to study the physiological importance of these proteases. My data show that Deg/HtrA proteases are not only important in stress response mechanisms under adverse conditions, but are also involved in the stabilization of important physiological processes, such as polysaccharides biosynthesis and peptidoglycan turnover. The small CAB-like proteins (SCPs) belong to the light harvesting-like family of stress induced proteins and are thought to be involved in the photoprotection of the photosynthetic apparatus. Five small CAB-like proteins where identified in Synechocystis sp. PCC 6803 (ScpA-E). In my studies I identified another relative to the SCPs, LilA, which I found to be co-transcribed with ScpD. I also focused on the subcellular localization and identification of potential interaction partners of the SCPs.
17

Overwintering Survival of Strawberry (Fragaria x ananassa): Proteins Associated with Low Temperature Stress Tolerance during Cold Acclimation in Cultivars

Koehler, Gage 28 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Winter survival is variable among commercially grown strawberry (Fragaria x ananassa) cultivars. The main objectives of this study were to evaluate the molecular basis that contribute to this difference in strawberry cultivars and to identify potential biomarkers that can be used to facilitate the development of new strawberry cultivars with improved overwintering hardiness. With these goals in mind, the freezing tolerance was examined for four cultivars, ‘Jonsok’, ‘Senga Sengana’, ‘Elsanta’, and ‘Frida’ (listed from most to least freezing tolerant based on survival from physiological freezing experiments) and the protein expression was investigated in the overwintering relevant crown structure of strawberry. Biomarker selection was based on comparing the protein profiles from the most cold-tolerant cultivar, ‘Jonsok’ with the least cold-tolerant cultivar ‘Frida’ in a comprehensive investigation using two label-free global proteomic methods, shotgun and two dimensional electrophoresis, with support from univariate and multivariate analysis. A total of 143 proteins from shotgun and 64 proteins from 2DE analysis were identified as significantly differentially expressed between ‘Jonsok’ and ‘Frida’ at one or more time points during the cold treatment (0, 2, and 42 days at 2 ºC). These proteins included molecular chaperones, antioxidants/detoxifying enzymes, metabolic enzymes, pathogenesis related proteins and flavonoid pathway proteins. The proteins that contributed to the greatest differences between ‘Jonsok’ and ‘Frida’ are candidates for biomarker development. The novel and significant aspects of this work include the first crown proteome 2DE map with general characteristics of the strawberry crown proteome, a list of potential biomarkers to facilitate the development of new strawberry cultivars with improved cold stress tolerance.

Page generated in 0.0432 seconds