• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3+1 Approach to Cosmological Perturbations : Deriving the First Order Scalar Perturbations of the Einstein Field Equations / Kosmologisk störningsräkning utifrån 3+1 formalismen : Härledning av första ordningens skalära störningar av Einsteins fältekvationer

Wilhelm, Söderkvist Vermelin January 2016 (has links)
Experimental data suggest that the universe is homogeneous and isotropic on sufficiently large scales. An exact solution of the Einstein field equations exists for a homogeneous and isotropic universe, also known as a Friedmann-Lemaître-Robertson-Walker (FLRW) universe. However, this model is only a first approximation since we know that, locally, the universe has anisotropic and inhomogeneous structures such as galaxies and clusters of galaxies. In order to successfully introduce inhomogeneities and anisotropies to the model one uses perturbative methods. In cosmological perturbations the FLRW universe is considered the zeroth order term in a perturbation expansion and perturbation theory is used to derive higher order terms which one tries to match with observations. In this thesis I present a review of the main concepts of general relativity, discuss the 3+1 formalism which gives us the Einstein field equations in a useful form for the perturbative analysis, and lastly, I derive the first order scalar perturbations of the Einstein field equations.

Page generated in 0.0685 seconds