• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 2
  • Tagged with
  • 23
  • 23
  • 11
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structure of mammalian RNA polymerase II elongation complex bound by α-amanitin and study of mammalian transcription termination and 3’ end processing

Liu, Xiangyang 09 October 2019 (has links)
No description available.
12

Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

Othoum, Ghofran K. 05 1900 (has links)
Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using 10-fold cross-validation for evaluation. These clustering and classification analyses strongly suggest that the regions surrounding the 3’end of genes contain sufficiently rich regulatory information to discriminate between over- and under-expressed genes; at least in the case of genes implicated in OC.
13

COMPILATION OF mRNA POLYADENYLATION SIGNALS IN ARABIDOPSIS THALIANA REVEALED NEW SIGNAL ELEMENTS AND POTENTIAL SECONDARY STRUCTURES

Loke, Johnny Chee Heng 16 December 2004 (has links)
No description available.
14

Transcriptome and Proteome Analysis using Signature Tags

Agaton, Charlotta January 2003 (has links)
With the full sequence of the human genome now available, anexciting era in biomedical research has started. The sequenceprovides information about all our genes and greatly increasesthe scope to compare genetic activities in different cells, toanalyze genetic variation between individuals and betweendifferent species and, most importantly, to investigatesystematically the whole genome in a gene-by-gene manner, andthus increase our understanding of gene function. This thesis describes studies in which developments weremade in several areas of functional genomics. Messenger RNAlevels were analyzed by the use of an amplification procedure,in which the 3´-ends of the transcripts were selected inorder to amplify the mRNA population in an unbiased fashion. Bysonicating cDNA originating from expressed mRNA, uniformlysized representatives of the transcripts,“signaturetags”, were obtained. The mRNA levels in the original mRNApopulation correlated well with the levels in the amplifiedmaterial, as verified by microarray analysis and realtimequantitative PCR. The expressed transcripts can be identifiedusing pyrosequencing, by comparing the obtained sequenceinformation from the signature tags to information contained invarious sequence databases. In one of the articles, the use ofpyrosequencing is illustrated by efforts to find genes involvedin the disease progression of atherosclerosis. More challenging than the study of mRNA levels is to analyzewhen, where and how proteins fulfill their wide-ranging rolesin all the various cellular processes. Proteins are morecomplex biomolecules than mRNA, each having unique properties.Current techniques for studying proteins need much improvement,and are often limited to investigations of a specific portionof the proteome. One approach for studying the whole proteomeis to systematically generate reagents with specific affinityfor the proteins encoded by the genome, one by one. Theaffinity reagents can be used as flags for their targets,providing a flag-specific detection system, so that the targetproteins can be sub-cellularly localized in the majority ofhuman tissues in an array format. One of the articles includedin the thesis presents a pilot project for large-scale affinityreagent production. The aim was to provide a sound basis forwhole proteome studies, but as a pilot study this investigationwas limited to the proteins encoded by human chromosome 21. Allputative genes on the chromosome were subjected to antibodygeneration in a systematic manner. Small, uniform, and easilyproduced representative portions of the full-length proteinswere expressed. These were denoted“Protein EpitopeSignature Tags”and were designed to be unique for theirfull-length counterparts. The antibodies were produced inrabbits and two of the articles in the thesis discuss differentapproaches for affinity purification of the antibodies toachieve the highest possible specificity towards the targets.The resulting“mono-specific”, but still“multi-epitope”, antibodies can be used for a widerange of additional biochemical studies, such as protein arrayand protein pull-out analyses. <b>Keywords:</b>functional genomics, 3´-end signaturetags, pyrosequencing, amplification, PrEST, chromosome 21,polyclonal antibodies, dual expression, affinitypurification.
15

Transcriptome and Proteome Analysis using Signature Tags

Agaton, Charlotta January 2003 (has links)
<p>With the full sequence of the human genome now available, anexciting era in biomedical research has started. The sequenceprovides information about all our genes and greatly increasesthe scope to compare genetic activities in different cells, toanalyze genetic variation between individuals and betweendifferent species and, most importantly, to investigatesystematically the whole genome in a gene-by-gene manner, andthus increase our understanding of gene function.</p><p>This thesis describes studies in which developments weremade in several areas of functional genomics. Messenger RNAlevels were analyzed by the use of an amplification procedure,in which the 3´-ends of the transcripts were selected inorder to amplify the mRNA population in an unbiased fashion. Bysonicating cDNA originating from expressed mRNA, uniformlysized representatives of the transcripts,“signaturetags”, were obtained. The mRNA levels in the original mRNApopulation correlated well with the levels in the amplifiedmaterial, as verified by microarray analysis and realtimequantitative PCR. The expressed transcripts can be identifiedusing pyrosequencing, by comparing the obtained sequenceinformation from the signature tags to information contained invarious sequence databases. In one of the articles, the use ofpyrosequencing is illustrated by efforts to find genes involvedin the disease progression of atherosclerosis.</p><p>More challenging than the study of mRNA levels is to analyzewhen, where and how proteins fulfill their wide-ranging rolesin all the various cellular processes. Proteins are morecomplex biomolecules than mRNA, each having unique properties.Current techniques for studying proteins need much improvement,and are often limited to investigations of a specific portionof the proteome. One approach for studying the whole proteomeis to systematically generate reagents with specific affinityfor the proteins encoded by the genome, one by one. Theaffinity reagents can be used as flags for their targets,providing a flag-specific detection system, so that the targetproteins can be sub-cellularly localized in the majority ofhuman tissues in an array format. One of the articles includedin the thesis presents a pilot project for large-scale affinityreagent production. The aim was to provide a sound basis forwhole proteome studies, but as a pilot study this investigationwas limited to the proteins encoded by human chromosome 21. Allputative genes on the chromosome were subjected to antibodygeneration in a systematic manner. Small, uniform, and easilyproduced representative portions of the full-length proteinswere expressed. These were denoted“Protein EpitopeSignature Tags”and were designed to be unique for theirfull-length counterparts. The antibodies were produced inrabbits and two of the articles in the thesis discuss differentapproaches for affinity purification of the antibodies toachieve the highest possible specificity towards the targets.The resulting“mono-specific”, but still“multi-epitope”, antibodies can be used for a widerange of additional biochemical studies, such as protein arrayand protein pull-out analyses.</p><p><b>Keywords:</b>functional genomics, 3´-end signaturetags, pyrosequencing, amplification, PrEST, chromosome 21,polyclonal antibodies, dual expression, affinitypurification.</p>
16

Analysis of the Arabidopsis Polyadenylation Factors PAP1, CstF64 and CstF77 and their characteristic inter-relationship

Bandyopadhyay, Amrita 01 January 2009 (has links)
3’-end modification by polyadenylation is a ubiquitous feature of almost all eukaryotic mRNA species and is catalyzed by a consortium of enzymes, the polyadenylation factors. Poly(A) polymerase (PAP), the enzyme catalyzing the addition of adenosine residues during the polyadenylation stage, exists in four isoforms within Arabidopsis. In silico and yeast two-hybrid studies showed that PAP1 has unique expression and interaction pattern in Arabidopsis, suggesting non-canonical functions of PAP1. Its exclusive interaction with PAP4 has not been reported in other living systems until now and hints at a difference in polyadenylation in plants with respect to mammals and yeast. Cleavage Stimulation Factor (CstF), a heterotrimeric complex of the polyadenylation factors CstF50, CstF64 and CstF77, plays a role largely in cleavage of pre-mRNA. This study highlights some aspects of the Arabidopsis homologs of CstF64 and CstF77, central to various cellular processes other than nuclear polyadenylation. In silico studies showed an elevated expression of CstF64 in the pollen while that of CstF77 remained fairly low. Yeast two-hybrid assays indicated a novel kind of interaction of CstF64 with Fip1(V). It is also speculated from sub-cellular localization techniques by agroinfiltration in tobacco leaves that CstF64 localizes in the cytoplasm and CstF77 in the nucleus, as found for the orthologs of CstF77 in other systems.
17

Etude structurale du complexe CstF et de son homologue chez la levure CF IA, deux facteurs indispensables pour la maturation 3' des pré-ARN messagers / Structural studies of the homologous metazoan CstF and yeast CFIA complexes essential for 3'-processing of pre-mRNA / Estudio estructural del complejo CstF y de su homologo de levaduras CF IA, dos factores indispensables para la maduración 3’ del pre-ARN mensajero

Moreno Morcillo, Maria 18 November 2010 (has links)
Une étape clé dans la maturation des pré-ARNms est le clivage et la polyadénylation que ceux-ci subissent sur leur extrémité 3’. Chez les métazoaires, le complexe CstF (Cleavage stimulation Factor) reconnaît une région de l’ARNm riche en U et U/G et stabilise le complexe CPSF (Cleavage Polyadenylation Stimulating Factor) sur le site de polyadénylation. Nous avons déterminé la structure cristallographique du domaine N-terminal d’une des trois sous-unités de CstF, CstF-50. Ce domaine forme un homodimère compact et présente deux surfaces identiques conservées dérivées de la formation du dimère. La structure dimérique de CstF-50 est en accord avec le modèle hexamèrique du complexe. L’homologue de CstF chez la levure, CF IA (Cleavage/polyadenylation Factor IA), est impliqué dans les réactions de clivage et polyadénylation de la maturation 3’. Nous avons reconstitué le complexe entier ‘in vitro’ et résolu la structure en solution par RMN des régions minimales impliquées dans l’interaction des sous-unités Rna14p et Rna15p. Pour la formation de l’hétérodimère, la région C-terminale de Rna14p, que nous avons appelé domaine « monkeytail », s’entrelace intimement avec la région « hinge » de Rna15p. La présence de ces deux domaines chez leurs homologues de mammifères, CstF-77 et CstF-64, suggère la conservation de ce type d’organisation entre ces deux sous-unités à travers les espèces. / The removal of the 3’ region of pre-mRNA followed by polyadenylation is a key step in mRNA maturation. In metazoa, Cleavage stimulation Factor (CstF) recognizes U and G/U rich cis-acting RNA sequence elements through its 64kDa subunit and helps stabilize the Cleavage Polyadenylation Stimulating Factor (CPSF) complex at the polyadenylation site. We describe the crystal structure of the N-terminal domain of the CstF-50 subunit. Through highly conserved residues, CstF-50 forms a compact homodimer that exposes two geometrically opposite and identical conserved surfaces. Together with prior data, the structure of the CstF-50 homodimerization domain supports a hexameric model of CstF. The yeast homologue of CstF is the Cleavage/polyadenylation Factor IA (CF IA) complex and is involved in both the cleavage and polyadenylation of pre-mRNA. We have reconstituted ‘in vitro’ the overall complex and also solved the solution structure of one of the inter-subunit regions, specifically the heterodimer involving peptides from Rna14p and Rna15p. Upon binding, a short C-terminal region from Rna14p wraps intimately within the central hinge domain from Rna15p. Conservation of residues reveals that the structural tethering is preserved in the homologous mammalian proteins. / La maduración 3’ del pre-ARNm es un proceso clave de la expresión génica que incluye el corte y la poliadenilación del extremo 3’ libre del pre-ARNm. En metazoos, el complejo CstF (Cleavage stimulation Factor) reconoce una secuencia del pre-ARNm rica en U y G/U y permite la estabilización del complejo CPSF (Cleavage Polyadenylation Stimulating Factor) en el sitio de poliadenilación. Hemos descrito la estructura cristalina del dominio N-terminal de una de las tres subunidades de CstF, CstF-50. La estructura ha revelado la organización de la proteína en un dímero compacto y conservado entre las especies. Dos zonas idénticas conservadas se encuentran expuestas a ambos lados de la superficie estructural. Nuestros resultados corroboran así la hipótesis sobre el modelo hexamérico del complejo CstF. CF IA (Cleavage/ polyadenylation Factor IA), el homólogo de CstF en levaduras, interviene en las dos etapas de la maduración 3’. Las bases para la reconstitución del factor CF IA ‘in vitro’ han sido establecidas. Al mismo tiempo, hemos resuelto la estructura del subcomplejo formado por las regiones de interacción de Rna14p y de Rna15p en solución mediante RMN. En el heterodímero, las dos proteínas forman una entidad única a través de la región C-terminal de Rna14p, dominio “monkeytail”, y el dominio “hinge” de Rna15p, quedando las hélices de la dos proteínas entrelazadas. La localización de estos dominios en sus homólogos mamíferos, CstF-77 et CstF-64, sugiere que este tipo de organización está conservada entre las especies.
18

Etudes génomiques de la dynamique de l'ARN polymérase II pendant l'étape de terminaison de la transcription et après un stress causé par les UV-B / Genome-wide characterization of RNA polymerase II behavior during transcription termination and upon UV-B stress

Gyenis, Akos 19 December 2012 (has links)
Afin de caractériser les profils de distribution de l’ARN Pol II en aval des EAGs, j’ai réalisé des expériences de ChIP-seq en utilisant un anticorps reconnaissant toutes les formes d’ARN Pol II humaine. J’ai analysé les profils de Pol II en aval de 13787 gènes qui n’ont pas de gène flanquant à +/- 4kb en amont ou en aval. Nos résultats ont été analysés en comparaison avec des données disponibles de séquençage à haut débit d’ARN naissants (Global Run On assay coupled sequencing : GRO-seq). Nos résultats montrent qu’un enrichissement de la Pol II en aval de l’extrémité des unités de transcription est une caractéristique partagée par tous les gènes exprimés et reflète la présence d’ARN Pol II active. Des analyses bioinformatiques (K-means clustering) m’ont permis de distinguer quatre groupes de gènes : le premier groupe (H) est caractérisé par un profil de pause étroit alors que les trois autres groupes (PA1-PA3) montrent un profil large ou très large, pouvant aller jusqu’à 6kb en aval des EAGs. Des analyses d’annotations (Gene Ontology) révèlent que le groupe H contient pratiquement exclusivement des gènes d’histones qui ne contiennent pas d’intron et dont les transcrits ne sont pas polyadénylés. A l’inverse, les groupes PA1-PA3 contiennent des gènes codant pour des transcrits polyadénylés. J’ai confirmé par des expériences de ChIP couplées à une analyse par qPCR les différents types de profils de distribution de Pol II décrits par analyse bioinformatique. Nos résultats sont en accord avec d’autres publications et suggèrent un lien entre le profil de distribution de la Pol II à l’extrémité 3’ des gènes histones et les mécanismes particuliers de maturation de l’extrémité 3’ de ces transcrits. Cette idée est renforcée par nos analyses fonctionnelles montrant que l’inhibition des mécanismes de polyadénylation augment la présence de l’ARN Pol II en 3’ des EAGs pour les gènes codant pour des transcrits polyadénylés. / The Pol II transcription cycle can be divided into three main phases: transcription initiation, elongation and termination. Each phase represent a possibility for the regulation of gene expression. Recently, genome-wide studies demonstrated that Pol II pausing is an important regulatory step that is present at almost every eukaryotic Pol II promoter. Surprisingly, paused or slowed down polymerases were also discovered downstream of 3’ end of genes, of which the exact role is still not fully understood.During my Ph.D. I carried out projects using chromatin immunoprecipitation assay coupled to high-throughput sequencing techniques to analyze genome-wide Pol II behavior in two aspects:First, we analyzed Pol II occupancy downstream of 3’ end of transcription units. Our analyses suggest that accumulation of Pol II downstream of genes is a genome-wide feature of active transcription. We found broad, often up to 6kb long Pol II occupancy signals at genes coding for polyadenylated transcripts. In contrast, Pol II occupancy shows a narrow profile at the annotated end of core histone genes. We also found a link between RNA 3’ end processing and Pol II accumulation at the end of transcription units.Second, we were following the genome-wide response and alteration of Pol II transcription upon genotoxic stress. Following UV-B treatment we observed a progressive Pol II signal loss from the promoters of expressed genes, which will then extend through the entire transcription unit, up to four hours after irradiation. This is in good agreement with the observation that after UV irradiation transcription is arrested during the period of transcription-coupled repair (TCR).
19

Étude fonctionnelle des sous-domaines de Pcf11 : rôle du 2nd NTD dans la terminaison de transcription des snoRNAs et des motifs liant le zinc dans les activités de maturation de l’extrémité 3’ des ARN messagers. / Functional analysis of Pcf11 sub-domains : role of the 2nd NTD in transcription termination of snoRNAs and zinc finger motifs in 3’-end processing of mRNAs

Guéguéniat, Julia 03 December 2015 (has links)
Chez les eucaryotes, la maturation de l’extrémité 3’ des ARNs messagers a lieu lors de la transcription et regroupe deux étapes : le clivage endonucléolytique du transcrit au niveau d’un site spécifique et l’ajout d’une queue poly(A) sur le fragment en amont du site de clivage. Chez S. cerevisiae, le complexe de polyadénylation est formé par 20 protéines, regroupées principalement en deux sous-complexes : CF IA et CPF. Nous nous intéressons plus spécifiquement à Pcf11, sous-unité du complexe CF IA. Pcf11 est formé de sept sous-domaines, mais la fonction d’une grande partie de la protéine n’est pour l’instant pas connue. Par exemple, aucune fonction n’est associée à la région située entre le domaine d’interaction avec le CTD de l’ARN polymérase II (CID) et une répétion de 20 résidus glutamines. Récemment, la structure de ce domaine, appelé 2nd NTD a été décrite. Pour essayer de comprendre la fonction du 2nd NTD et des motifs liant le zinc encadrant le domaine d’interaction avec Clp1, nous avons mis en place une stratégie systématique de mutagénèse, soit par délétions, soit par mutations ponctuelles. Le 2nd NTD est formé de trois hélices α et interagit avec l’ARN. La délétion de ce domaine conduit à un phénotype de croissance lente chez la levure et un défaut de terminaison de transcription des snoRNAs. Malgré une similarité de structure et de fonction, le 2nd NTD présenterait une fonction indépendante. La fonction des motifs liant le zinc n’est pour l’instant pas connue. Cependant, la mutation de l’un de ces deux motifs conduit à un défaut de clivage et de polyadénylation in vitro. La mutation des deux motifs est létale chez la levure. / In eukaryotes, poly (A) tails are added to nuclear pre-mRNA 3'-ends in the two steps of cleavage and polyadenylation. This co-transcriptional processing requires the activity of a large protein complex comprising at least 20 different polypeptides in yeast organized primarily into the two factors CF IA and CPF. We are interested in the functional characterization of Pcf11, a CF IA subunit. The Pcf11 protein is organized into seven different domains, but here is still a large portion of the polypeptide that has not yet been characterized. For example the region from the end of the CTD interaction domain (CID) to an uninterrupted stretch of 20 glutamine residues has no known function. Recently, the structure of this region, called the 2nd NTD have been characterized. To gain insight into the function of the 2nd NTD and the two zinc fingers motif surrounding the Clp1 interaction domain, we have employed a systematic strategy of mutagenesis, either by deletion or via point mutations. The 2nd NTD is a folded domain composed of three α-helices. The deletion of this domain induced a severe defect of growth in yeast and impaired transcription termination of snoRNAs. Despite its similarity in structure and function with the CID, the 2nd NTD seems to act like an independent RNA binding domain. We don’t know yet the real function of the two zinc fingers motif at the C-terminal region of Pcf11, but the mutation of Cystein residues into serine of one of the two motifs impaired cleavage and polyadenylation. The mutation of the first motif is less harmful than the mutation of the second motif. The simultaneous mutation is lethal in yeast.
20

Understanding Assembly of AGO2 RISC: the RNAi enzyme: a Dissertation

Matranga, Christian B. 17 September 2007 (has links)
In 1990, Richard Jorgensen’s lab initiated a study to test if they could create a more vivid color petunia (Napoli et al. 1990). Their plan was to transform plants with the chalcone synthase transgene––the predicted rate limiting factor in the production of purple pigmentation. Much to their surprise, the transgenic plants, as well as their progeny, displayed a great reduction in pigmentation. This loss of endogenous function was termed “cosuppression” and it was thought that sequence-specific repression resulted from over-expression of the homologous transgene sequence. In 1998, Andrew Fire and Craig Mello described a phenomenon in which double stranded RNA (dsRNA) can trigger silencing of cognate sequences when injected into the nematode, Caenorhabditis elegans (Fire et al. 1998). This data explained observations seen years earlier by other worm researchers, and suggested that repression of pigmentation in plants was caused by a dsRNA-intermediate (Guo and Kemphues 1995; Napoli et al. 1990). The phenomenon––which soon after was coined RNA interference (RNAi)––was soon discovered to be a post-transcriptional surveillance system in plants and animals to remove foreign nucleic acids.

Page generated in 0.0522 seconds