1 |
Characterization of a 30S Ribsomal Subunit Intermediate Found in <em>Escherichia coli<em> Cells Growing with Neomycin and Paromomycin.Foster, Cerrone Renee 14 August 2007 (has links) (PDF)
The bacterial ribosome is a target for inhibition by numerous antibiotics. Neomycin and paromomycin are aminoglycoside antibiotics that specifically stimulate the misreading of mRNA by binding to the decoding site of 16S rRNA in the 30S ribosomal subunit. Recent work has shown that both antibiotics also inhibit 30S subunit assembly in Escherichia coli and Staphylococcus aureus cells. This work describes the characteristics of an assembly intermediate produced in E.coli cells grown with neomycin or paromomycin. Antibiotic treatment stimulated the accumulation of a 30S assembly precursor with a sedimentation coefficient of 21S. The particle was able to bind radio labeled antibiotics both in vivo and in vitro. Hybridization experiments showed that the 21S precursor particle contained 16S and 17S rRNA. Ten 30S ribosomal proteins were found in the precursor after inhibition by each drug in vivo. In addition, cell free reconstitution assays generated a 21S particle during incubation with either aminoglycoside. Precursor formation was inhibited with increasing drug concentration. This work examines features of a novel antibiotic target for aminoglycoside and will provide information that is needed for the design of more effective antimicrobial agents.
|
2 |
The Role of the YjeQ GTPase in Bacterial Ribosome Biogenesis: Function of the C-terminal Zinc-finger DomainJeganathan, Ajitha 14 May 2015 (has links)
<p>Our understanding of the mechanism of ribosome assembly in bacteria is still in its infancy. Work from our laboratory and others have recently established that some protein assembly factors assist the assembly process at its late stages, mediating the correct folding of the functional core of the 30S and 50S subunits. The GTPase YjeQ is an assembly factor that displaces the upper domain of h44 of the mature 30S subunit upon binding, inducing a distortion in the decoding center. We hypothesized that the displacement of h44 is caused by the zinc-finger domain of YjeQ and mediates the release of RbfA, another assembly factor involved in 30S subunit maturation. To understand how the zinc-finger domain of YjeQ implements the functional interplay with RbfA, we constructed several deletion mutants of the domain. We found that the zinc-finger domain of YjeQ was required to bind the 30S subunit, but not the C-terminal extension (CTE) of the domain. The CTE was necessary for stimulation of GTPase activity upon binding to the 30S subunit and removal of bound RbfA from the 30S subunit. The data presented here suggests that the zinc-finger domain is essential for YjeQ to bind the 30S subunit and to implement the functional interplay with RbfA. Ongoing structural studies of the complex formed by the YjeQ CTE variant and the 30S subunit will provide a three dimensional view of the conformational changes that occur to implement the functional interplay between YjeQ and RbfA at the late stages of 30S subunit assembly.</p> / Master of Science (MSc)
|
3 |
Structural and Genetic Studies of Translation in <i>Escherichia coli</i>Zhao, Qing January 2005 (has links)
<p>Ribosomes are the universal ribonucleoprotein organelles that translate the genetic message from mRNA to protein. In prokaryotes, the ribosomal subunits are 30S and 50S subunit, which bind together during the translation process forming 70S ribosome. The ribosome is a highly dynamic structure, and acts as a working platform for the different factors involved in the process of converting the genetic information into protein.</p><p>Cryo-electron tomography (cryo-ET) is an emerging imaging technology that combines the potential of three-dimensional (3D) reconstruction at molecular resolution with a close-to-native preservation of the specimen. Here, we have applied this method to reconstruct rifampicin-treated <i>Escherichia coli</i> individual 30S subunits in vitro and in situ, and individual 50S subunits in situ. In the 30S subunit, the head, the platform and the body show large conformational movements relative to each other. The particles are grouped into three conformational groups according to the width/height ratios. Also, an S15 fusion protein derivative has been used as a physical reporter to localize S15 in the 30S subunit. In the 50S subunit, the L1 stalk, the L7/L12 stalk, the central protuberance (CP), and the peptidyl transferase center (PTC) cleft are the most dynamic and flexible parts in the reconstructed structures with clear movements indicated. Different locations of the tunnel in the central cross-sections through the in situ 50S subunits indicate a flexible pathway inside the large subunit. In addition, gross morphological changes were also been observed in our reconstructions. Our results demonstrate a considerable conformational flexibility among individual ribosomal subunits, both in vitro and in situ.</p><p>Translation is an essential process for all cells and organisms. Translation initiation is the rate-limiting step and the most highly regulated phase of translation process. Several regions along the mRNA have been reported to influence translation initiation. The Shine-Dalgarno (SD) sequence located 5-9 bases upstream of the initiation codon supports translation initiation by complementary binding to the Anti-Shine-Dalgarno (ASD) sequence on the 16S rRNA.</p><p>We have here compared how an SD<sup>+</sup> sequence influences gene expression, if located upstream or downstream of an initiation codon. The positive effect of an upstream SD<sup>+</sup> is confirmed. A downstream SD<sup>+</sup> gives decreased gene expression. If an SD<sup>+</sup> is placed between two potential initiation codons, initiation takes place predominantly at the second start site. The first start site is activated if the distance between this site and the downstream SD<sup>+</sup> is enlarged and/or if the second start site is weakened. Upstream initiation is eliminated if a stable stem-loop structure is placed between this SD<sup>+</sup> and the upstream start site. The results suggest that the two start sites compete for ribosomes that bind to an SD<sup>+</sup> located between them. A minor positive contribution to upstream initiation resulting from 3’ to 5’ ribosomal diffusion along the mRNA is suggested. Since the location of SD<sup>+ </sup>or SD-like sequences can strongly influence gene expression, this should be of significant evolutionary importance.</p>
|
4 |
Structural and Genetic Studies of Translation in Escherichia coliZhao, Qing January 2005 (has links)
Ribosomes are the universal ribonucleoprotein organelles that translate the genetic message from mRNA to protein. In prokaryotes, the ribosomal subunits are 30S and 50S subunit, which bind together during the translation process forming 70S ribosome. The ribosome is a highly dynamic structure, and acts as a working platform for the different factors involved in the process of converting the genetic information into protein. Cryo-electron tomography (cryo-ET) is an emerging imaging technology that combines the potential of three-dimensional (3D) reconstruction at molecular resolution with a close-to-native preservation of the specimen. Here, we have applied this method to reconstruct rifampicin-treated Escherichia coli individual 30S subunits in vitro and in situ, and individual 50S subunits in situ. In the 30S subunit, the head, the platform and the body show large conformational movements relative to each other. The particles are grouped into three conformational groups according to the width/height ratios. Also, an S15 fusion protein derivative has been used as a physical reporter to localize S15 in the 30S subunit. In the 50S subunit, the L1 stalk, the L7/L12 stalk, the central protuberance (CP), and the peptidyl transferase center (PTC) cleft are the most dynamic and flexible parts in the reconstructed structures with clear movements indicated. Different locations of the tunnel in the central cross-sections through the in situ 50S subunits indicate a flexible pathway inside the large subunit. In addition, gross morphological changes were also been observed in our reconstructions. Our results demonstrate a considerable conformational flexibility among individual ribosomal subunits, both in vitro and in situ. Translation is an essential process for all cells and organisms. Translation initiation is the rate-limiting step and the most highly regulated phase of translation process. Several regions along the mRNA have been reported to influence translation initiation. The Shine-Dalgarno (SD) sequence located 5-9 bases upstream of the initiation codon supports translation initiation by complementary binding to the Anti-Shine-Dalgarno (ASD) sequence on the 16S rRNA. We have here compared how an SD+ sequence influences gene expression, if located upstream or downstream of an initiation codon. The positive effect of an upstream SD+ is confirmed. A downstream SD+ gives decreased gene expression. If an SD+ is placed between two potential initiation codons, initiation takes place predominantly at the second start site. The first start site is activated if the distance between this site and the downstream SD+ is enlarged and/or if the second start site is weakened. Upstream initiation is eliminated if a stable stem-loop structure is placed between this SD+ and the upstream start site. The results suggest that the two start sites compete for ribosomes that bind to an SD+ located between them. A minor positive contribution to upstream initiation resulting from 3’ to 5’ ribosomal diffusion along the mRNA is suggested. Since the location of SD+ or SD-like sequences can strongly influence gene expression, this should be of significant evolutionary importance.
|
Page generated in 0.0491 seconds