Spelling suggestions: "subject:"3D team"" "subject:"3D beam""
1 |
Rigorous joining of advanced reduced-dimensional beam models to 3D finite element modelsSong, Huimin 07 April 2010 (has links)
This dissertation developed a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements.
As a proof of concept, a joint 2D-beam approach is studied for planar-inplane deformation of strip-beams. This approach is developed for obtaining understanding needed to do the joint 3D-beam model. A Matlab code is developed to solve achieve this 2D-beam approach. For joint 2D-beam approach, the static response of a basic 2D-beam model is studied. The whole beam structure is divided into two parts. The root part where the boundary condition is applied is constructed as a 2D model. The free end part is constructed as a beam model. To assemble the two different dimensional model, a transformation matrix is used to achieve deflection continuity or load continuity at the interface. After the transformation matrix from deflection continuity or from load continuity is obtained, the 2D part and the beam part can be assembled together and solved as one linear system.
For a joint 3D-beam approach, the static and dynamic response of a basic 3D-beam model is studied. A Fortran program is developed to achieve this 3D-beam approach. For the uniform beam constrained at the root end, similar to the joint 2D-beam analysis, the whole beam structure is divided into two parts. The root part where the boundary condition is applied is constructed as a 3D model. The free end part is constructed as a beam model. To assemble the two different dimensional models, the approach of load continuity at the interface is used to combine the 3D model with beam model. The load continuity at the interface is achieved by stress recovery using the variational-asymptotic method. The beam properties and warping functions required for stress recovery are obtained from VABS constitutive analysis. After the transformation matrix from load continuity is obtained, the 3D part and the beam part can be assembled together and solved as one linear system. For a non-uniform beam example, the whole structure is divided into several parts, where the root end and the non-uniform parts are constructed as 3D models and the uniform parts are constructed as beams. At all the interfaces, the load continuity is used to connect 3D model with beam model. Stress recovery using the variational-asymptotic method is used to achieve the load continuity at all interfaces. For each interface, there is a transformation matrix from load continuity. After we have all the transformation matrices, the 3D parts and the beam parts are assembled together and solved as one linear system.
|
2 |
Nouveaux modèles d'éléments finis de poutres enrichies / New enriched models for beam finite elementsFerradi, Mohammed Khalil 07 December 2015 (has links)
Les éléments de poutres classiques (Euler-Bernoulli, Timoshenko, Vlassov…), sont tous basés sur certaines hypothèses simplificatrices, qui ont pour conséquence de fixer la forme de la cinématique de l'élément. Ceci revient à réduire un modèle ayant par définition une infinité de d.d.l., à un modèle avec un nombre fini de d.d.l.. Quel que soit donc le chargement auquel sera soumise la poutre, elle se déformera toujours selon la cinématique adoptée au départ. L'objectif de cette thèse est de s'affranchir des hypothèses inhérentes aux modèles de poutres classiques, pour développer un nouveau modèle de poutre enrichie, capable de représenter d'une manière précise les déformations globales aussi bien que locales. Ce type d'élément, permettra la représentation de la flexion transversale dans une poutre, de capturer des effets locaux, produits par exemple par un câble d'ancrage ou de précontrainte sur un tablier de pont, ou encore de traiter le traînage de cisaillement sur des poutres à grandes largeurs. Après un bref rappel de quelques théories de poutres classiques, on présentera dans les deux premiers articles, une nouvelle méthode pour la détermination de modes transversaux et de gauchissements, basée sur une analyse aux valeurs propres d'un modèle mécanique de la section pour l'obtention de la base des modes transversaux, et un procédé d'équilibre itératif pour la détermination de la base des modes de gauchissements. La cinématique ainsi définie, le PTV sera utilisé pour obtenir les équations d'équilibre de la poutre, pour ensuite en déduire la matrice de raideur à partir de leur solution analytique. Dans le troisième article, une nouvelle méthode est proposée pour l'obtention d'une cinématique plus appropriée, où les bases des modes transversaux et de gauchissements sont obtenues en fonction des chargements extérieurs. Cette méthode est basée sur l'application de la méthode des développements asymptotiques à la résolution des équations fortes décrivant l'équilibre d'une poutre / The available classical beam elements (such as Euler-Bernoulli, Timoshenko, Vlassov…), are all based on some hypothesis, that have the effect of defining the kinematic of the beam. This is equivalent to reducing a model with an infinity of d.o.f., to a model with a finite d.o.f.. Thus, for arbitrary loadings, the beam will always deform according to the adopted kinematics. The objective of this thesis, is to completely overcome all the hypothesis behind the classical beam models, to develop a new higher order beam model, able to represent precisely the global and local deformations. This kind of element will also allow the derivation of the transversal bending of the beam, to capture the local effects due to anchor or prestressing cables, or to treat the shear lag phenomenon in large width spans. After a brief review of some classical beam theories, we will develop in the two first articles a new method to obtain a basis for the transverse deformation and warping modes. The method is based on an eigenvalue analysis of a mechanical model of the cross section, to obtain the transverse deformation modes basis, and an iterative equilibrium scheme, to obtain the warping modes basis. The kinematic being defined, the virtual work principle will be used to derive the equilibrium equations of the beam, then the stiffness matrix will be assembled from their analytical solution. In the third article, a new method is proposed for the derivation of a more appropriate kinematic, where the transverse deformation and warping modes are obtained in function of the external loadings. The method is based on the application of the asymptotic expansion method to the strong form of the equilibrium equations describing the beam equilibrium
|
3 |
Development of a new 3D beam finite element with deformable section / Développement d’un nouveau 3D poutre élément fini à section déformableGao, Sasa 05 April 2017 (has links)
Le nouvel élément de poutre est une évolution d'un élément de Timoshenko poutre avec un nœud supplémentaire situé à mi-longueur. Ce nœud supplémentaire permet l'introduction de trois composantes supplémentaires de contrainte afin que la loi constitutionnelle 3D complète puisse être utilisée directement. L'élément proposé a été introduit dans un code d'éléments finis dans Matlab et une série d'exemples de linéaires/petites contraintes ont été réalisées et les résultats sont systématiquement comparés avec les valeurs correspondantes des simulations ABAQUS/Standard 3D. Ensuite, la deuxième étape consiste à introduire le comportement orthotrope et à effectuer la validation de déplacements larges / petites contraintes basés sur la formulation Lagrangienne mise à jour. Une série d'analyses numériques est réalisée qui montre que l'élément 3D amélioré fournit une excellente performance numérique. En effet, l'objectif final est d'utiliser les nouveaux éléments de poutre 3D pour modéliser des fils dans une préforme composite textile. A cet effet, la troisième étape consiste à introduire un comportement de contact et à effectuer la validation pour un nouveau contact entre 3D poutres à section rectangulaire. La formulation de contact est dérivée sur la base de formulation de pénalité et de formulation Lagrangian mise à jour utilisant des fonctions de forme physique avec l'effet de cisaillement inclus. Un algorithme de recherche de contact efficace, qui est nécessaire pour déterminer un ensemble actif pour le traitement de contribution de contact, est élaboré. Et une linéarisation constante de la contribution de contact est dérivée et exprimée sous forme de matrice appropriée, qui est facile à utiliser dans l'approximation FEM. Enfin, on présente quelques exemples numériques qui ne sont que des analyses qualitatives du contact et de la vérification de l'exactitude et de l'efficacité de l'élément de 3D poutre proposé. / The new beam element is an evolution of a two nodes Timoshenko beam element with an extra node located at mid-length. That extra node allows the introduction of three extra strain components so that full 3D stress/strain constitutive relations can be used directly. The second step is to introduce the orthotropic behavior and carry out validation for large displacements/small strains based on Updated Lagrangian Formulation. A series of numerical analyses are carried out which shows that the enhanced 3D element provides an excellent numerical performance. Indeed, the final goal is to use the new 3D beam elements to model yarns in a textile composite preform. For this purpose, the third step is introducing contact behavior and carrying out validation for new 3D beam to beam contact with rectangular cross section. The contact formulation is derived on the basis of Penalty Formulation and Updated Lagrangian formulation using physical shape functions with shear effect included. An effective contact search algorithm is elaborated. And a consistent linearization of contact contribution is derived and expressed in suitable matrix form, which is easy to use in FEM approximation. Finally, some numerical examples are presented which are only qualitative analysis of contact and checking the correctness and the effectiveness of the proposed 3D beam element.
|
4 |
Development and application of corotational finite elements for the analysis of steel structures in firePossidente, Luca 19 February 2021 (has links)
Utbredningen av en brand inuti en byggnad kan leda till global eller lokal strukturell kollaps, särskilt i stålramkonstruktioner. Faktum är att stålkonstruktioner är särskilt utsatta för termiska angrepp på grund av ett högt värde av stålkonduktivitet och tvärsnitten med små tjockleken. Som en viktig aspekt av konstruktionen bör brandsäkerhetskrav uppnås antingen enligt föreskrivande regler eller enligt antagande av prestationsbaserad brandteknik. Trots möjligheten att använda enkla metoder som involverar membersanalys kombinerat med nominella brandkurvor, är en mer exakt analys av det termomekaniska beteendet hos en stålkonstruktion ett tilltalande alternativ eftersom det kan leda till mer ekonomiska och effektiva lösningar genom att ta hänsyn till möjliga gynnsamma mekanismer.
Denna analys kräver vanligtvis utredning av delar av strukturen eller till och med av hela strukturen. För detta ändamål och för att få en djupare kunskap om strukturelementens beteende vid förhöjd temperatur bör numerisk simulering användas. I denna avhandling utvecklades och användes termomekaniska finita element som är lämpliga för analys av stålkonstruktioner utsätta för brand. Relevanta fallstudier utfördes.
Utvecklingen av både ett termomekaniskt skal- och 3D balkelement baserade på en korotationsformulering presenteras. De flesta relevanta strukturfall kan undersökas på ett adekvat sätt genom att antingen använda något av dessa element eller kombinera dem. Korotationsformuleringen är väl lämpad för analyser av strukturer där stora förskjutningar, men små töjningar förekommer, som i fallet med stålkonstruktioner i brand. Elementens huvuddrag beskrivs, liksom deras karakterisering i termomekaniskt sammanhang. I detta avseende övervägdes materialnedbrytningen på grund av temperaturökningen och den termiska expansionen av stål vid härledningen av elementen. Dessutom presenteras en grenväxlingsprocedur för att utföra preliminära instabilitetsanalyser och få viktig
inblick i efterknäckningsbeteendet hos stålkonstruktioner som utsätts för brand.
Tillämpningen av de utvecklade numeriska verktygen ges i den del av avhandlingen som ägnas åt det publicerade forskningsarbetet. Flera aspekter av knäckningen av stålkonstruktionselement vid förhöjd temperatur diskuteras. I Artikel I tillhandahålls överväganden om påverkan av geometriska imperfektioner på beteendet hos komprimerade stålplattor och kolonner vid förhöjda temperaturer, liksom implikationer och resultat av användningen av grenväxlingsprocedur. I Artikel II valideras det föreslagna 3D-balkelementet genom meningsfulla fallstudier där torsionsdeformationer är signifikanta. De utvecklade balk- och skalelementen används i en undersökning av knäckningsmotstånd hos komprimerade vinkel-, Tee- och korsformade stålprofiler vid förhöjd temperatur som presenteras i Artikel III. En förbättrad knäckningskurva för design presenteras i detta arbete. Som ett exempel på tillämpningen av principerna för brandsäkerhetsteknik presenteras en omfattande analys i Artikel IV. Två relevanta brandscenarier identifieras för den undersökta byggnaden, som modelleras och
analyseras i programmet SAFIR. / The ignition and the propagation of a fire inside a building may lead to global or local structural collapse, especially in steel framed structures. Indeed, steel structures are particularly vulnerable to thermal attack because of a high value of steel conductivity and of the small thickness that characterise the cross-sections. As a crucial aspect of design, fire safety requirements should be achieved either following prescriptive rules or adopting performance-based fire engineering. Despite the possibility to employ simple methods that involve member analysis under nominal fire curves, a more accurate analysis of the thermomechanical behaviour of a steel structural system is an appealing alternative, as it may lead to more economical and efficient solutions by taking into account possible favourable mechanisms. This analysis typically requires the investigation of parts of the structure or even of the whole structure. For this purpose, and in order to gain a deeper knowledge about the behaviour of structural members at elevated temperature, numerical simulation should be employed. In this thesis, thermomechanical finite elements, suited for the analyses of steel structures in fire, were developed and exploited in numerical simulation of relevant case studies.
The development of a shell and of a 3D beam thermomechanical finite element based on a corotational formulation is presented. Most of the relevant structural cases can be adequately investigated by either using one of these elements or combining them. The corotational formulation is well suited for the analyses of structures in which large displacements, but small strains occur, as in the case of steel structures in fire. The main features of the elements are described, as well as their characterization in the thermomechanical context. In this regard, the material degradation due to the temperature increase and the thermal expansion of steel were considered in the derivation of the elements. In addition, a branch-switching procedure to perform preliminary instability analyses and get important insight into the post-buckling behaviour of steel structures subjected to fire is presented.
The application of the developed numerical tools is provided in the part of the thesis devoted to the published research work. Several aspects of the buckling of steel structural elements at elevated temperature are discussed. In paper I, considerations about the influence of geometrical imperfections on the behaviour of compressed steel plates and columns at elevated temperatures are provided, as well as implications and results of the employment of the branch-switching procedure. In Paper II, the proposed 3D beam element is validated for meaningful case studies, in which torsional deformations are significant. The developed beam and shell elements are employed in an investigation of buckling resistance of compressed angular, Tee and cruciform steel profiles at elevated temperature presented in Paper III. An improved buckling curve for design is presented in this work. Furthermore, as an example of the application of Fire Safety Engineering principles, a comprehensive analysis is proposed in Paper IV. Two relevant fire scenarios are identified for the investigated building, which is modelled and analysed in the software SAFIR.
|
Page generated in 0.0379 seconds