Spelling suggestions: "subject:"3D bioprinting"" "subject:"3D riboprinting""
21 |
Engenharia tecidual hepática utilizando células tronco pluripotentes induzidas / Liver tissue engineering using induced pluripotent stem cellsGuimarães, Ernesto da Silveira Goulart 18 June 2019 (has links)
Atualmente, a única alternativa viável para pacientes que possuem um quadro de doença hepática em estágio final é o transplante total ou parcial de fígado. Devido à crescente defasagem entre doadores disponíveis e pacientes em fila de espera, o desenvolvimento de abordagens de engenharia tecidual hepática (ETH) se tornou uma necessidade crescente. As células pluripotentes induzidas (iPS) são uma atraente alternativa para servirem como fonte celular para aplicações de engenharia tecidual por serem capazes de produzir todos os fenótipos celulares. Dentre as principais abordagens de EHT podemos citar as técnicas de bioimpressão 3D, organóides hepáticos e descelularização/recelularização. Este trabalho buscou avaliar a utilização de células iPS no desenvolvimento das três tecnologias descritas. Visando avaliar como imprimir um tecido hepático funcional com células iPS, testamos a impressão com hepatócitos dispersos em células únicas em comparação com a impressão de esferóiedes hepáticos. Os esferóides hepáticos mostraram maior viabilidade e funcionalidade hepática por preservarem o fenótipo epitelial ao longo do tempo. A composição de células não parenquimáticas derivadas de iPS ou células primárias para a formação de organóides hepáticos foi testada neste trabalho. Os resultados indicam que, utilizando células mesenquimais primárias e endoteliais derivadas de iPS, obtém-se uma maturação hepatica mais eficiênte devido a inibição das vias de sinalização TGF-β? e modulação da via Wnt. A recelularização do tecido aórtico descelularizado de ratos com células derivadas de iPS mostrou ser capaz de prover função hepática em cultura assistida por biorreator, porém os resultados indicam a necessidade de aprimoramento do protocolo de recelularização. Este trabalho comprovou a viabilidade da aplicação de células iPS nas abordagens EHT testadas e contribuiu para o desenvolvimento de alternativas terapêuticas viáveis para pacientes em fila de espera de transplante hepático / Currently, the only feasible alternative for patients with end-stage liver disease is total or partial liver transplantation. Due to the growing gap between available donors and patients in waiting list, the development new tissue engineering technologies have become a growing need. Induced pluripotent cells (iPS) are an attractive alternative to serve as cell source for tissue engineering applications due to their ability to differentiate into all cellular phenotypes. Among the main liver tissue engineering technologies, 3D bioprinting, hepatic organoids and decellularization/recellularization of biological matrixes have generated much expectation. Thus, this work aimed to evaluate the use of iPS cells in the development of the aforementioned technologies. In order to evaluate how to bioprint a functional liver tissue using iPS-derived cells, we tested the effect of printing a single cell dispersion of hepatocytes versus printing hepatic spheroids. Hepatic spheroids showed greater viability and liver function, due to preserved epithelial phenotype over time. The composition of non-parenchymal cells using iPS-derived cells or primary adult cells for hepatic organoid formation was tested. The results indicated that, using primary mesenchymal cells and iPS-derived endothelial cells, we obtained a more efficient hepatic maturation due to the inhibition of TGF-β? and modulation Wnt signaling pathway. Recellularization of rat aortic decellularized scaffold with iPS-derived cells displayed hepatic function over time in a bioreactor-assisted culture, but the results indicate the need for improvements in the recellularization protocol. In conclusion, this work demonstrated the feasibility of use of iPS-derived cells for liver tissue engineering approaches and contributed to the development of the investigated technologies in order to generate future therapeutic alternatives for patients in waiting list for liver transplantation
|
22 |
Novel techniques for engineering neural tissue using human induced pluripotent stem cellsDe la Vega Reyes, Laura 24 December 2019 (has links)
Tissue engineering (TE) uses a combination of biomaterial scaffolds, cells, and drug delivery systems (DDS) to create tissues that resemble the human physiology. Such engineered tissues could be used to treat, repair, replace, and augment damaged tissues or organs, for disease modeling, and drug screening purposes. This work describes the development and use of novel strategies for engineering neural tissue using a combination of drug delivery systems (DDS), human induced pluripotent stem cells (hiPSCs), and bioprinting technologies for the generation of a drug screening tool to be used in the process of drug discovery and development. The DDS consisted of purmorphamine (puro) loaded microspheres that were fabricated using an oil-in-water single emulsion with 84% encapsulation efficiency and showed the slow release of puro for up to 46 days in vitro. Puro and retinoic acid (RA)-loaded microspheres were combined with hiPSCs-derived neural aggregates (NAs) that differentiated into neural tissues expressing βT-III and showed increased neural extension. hiPCS-derived neural progenitor cells (NPCs) were bioprinted on a layer-by-layer using a fibrin based-bioink and extrusion based- bioprinting. The bioprinted structures showed >81% cellular viability after 7 days of culture in vitro and the expression of the mature motor neuron (MN) markers HB9 and CHAT. Lastly, hiPCS-derived NPCs were bioprinted in combination with puro and RA-loaded microspheres and cultured for 45 days in vitro. The microspheres slowly released the drug and after 30 and 45 days the tissues contained mature neurons, astrocytes and oligodendrocytes expressing CHAT, GFAP, and O4, respectively. Changes in membrane potential indicated tissue responsiveness to different types of treatments such as acetylcholine and gamma-aminobutyric acid (GABA). In the future the bioprinted tissues could contain localized regions of varied drug releasing microspheres using a concentration gradient to promote differentiation into specific cell types in order to create more complex tissues. Moreover, these tissues will benefit from the presence of a neurovascular unit (NVU). Upon validation, the engineered tissues could be used as preclinical tools to test potential drugs and be used for personalized medicine by using patient specific hiPSCs. / Graduate / 2020-11-19
|
23 |
Modeling Liver Diseases Using Hepatic Cell MicroarraysRoth, Alexander David 13 December 2018 (has links)
No description available.
|
24 |
Learning Through Taking Action : An empirical study into the early-stage business model development for a novel technologyMaslov, Daniel, Javenius, Hugo January 2023 (has links)
This thesis examines the critical factors shaping early-stage business model development. As a result, this paper provides insights and recommendations for the effective commercialization of innovations. The early-stage business model development process is notoriously complex and ambiguous, yet a limited amount if empirical studies have been conducted in this crucial phase. To address this research gap, an action research approach is employed to document learnings and challenges through an empirical case study into the early-stage business model development for a novel bioprinting technology. The study leverages existing literature to define specific actions and utilizes reflective analysis to gain comprehensive understanding of the factors shaping the process. Through this approach, important new lessons are uncovered for facilitators, highlighting both the facilitating role of tools and methods, as well as their limitations in enhancing the cognitive processes of understanding customer value, how to create value, and how to capture it efficiently. The research findings demonstrate the the business model development and innovation processes are iterative and complex, as well as heavily reliant on engagement and resource allocation. Furthermore, newfound theoretical considerations of commitment, organizational capabilities, and risk appetite arecrucial for the successful realizability of business models. Based on these findings, recommendations of future business model development in similar contexts are presented. These include the importance of achieving a common understanding among stakeholders, a thorough understanding of customer value, a thoughtful ideation process combining convergent and divergent thinking, and a comprehensive assessment of commitment and tolerance for ambiguity. This these contributes to the exisiting body of literature by holistically shedding light on the early-stage business model development process through documented action and by providing practical insights for practitioners and stakeholders involved in innovation commercialization. / Denna uppsats undersöker de kritiska faktorer som formar utvecklingen av affärsmodeller i tidiga skeden samt bidrar med insikter och rekommendationer för effektiv kommersialisering av innovationer. Processen för utveckling av affärsmodeller i tidiga skeden är känd för sin komplexitet och tvetydighet, men det finns få empiriska studier av denna avgörande fas. För att fylla detta forskningsgap används en aktionsforskningsansats för att dokumentera lärdomar och utmaningar genom en empirisk fallstudie på affärsmodellsutveckling i ett tidigt stadie för en ny bioprintingteknik. Studien utnyttjar befintlig litteratur för att definiera specifika åtgärder och använder reflekterande analys för att skapa en omfattande förståelse för de faktorer som formar processen. Genom detta tillvägagångssätt kan viktiga nya lärdomar dras kring facilitatorer, vilket belyser både verktygens och metodernas underlättande roll och deras begränsningar när det gäller att förbättra den kognitivaprocessen för att förstå kundvärde, hur man skapar och fångar detta värde på ett effektivt sätt. Forskningsresultaten visar att innovationsprocessen för affärsmodeller är iterativ, komplex och starkt beroende av engagemang och resursallokering. Dessutom är nya funna teoretiska överväganden om engagemang, organisatorisk kapacitet och riskaptit avgörande för en framgångsrik realisering av affärsmodeller. Baserat på dessa resultat presenteras rekommendationer för framtida utveckling av affärsmodeller i liknande kontexter. Dessa rekommendationer inkluderar vikten av att uppnå en samsyn bland intressenterna, en grundlig förståelse för kundvärdet, en genomtänkt idéprocess som kombinerar konvergent och divergent tänkande, samt en omfattande bedömning av engagemang och tolerans för ambiguitet. Denna uppsats bidrar till den befintliga kunskapen genom att holistiskt belysa utvecklingsprocessen för affärsmodeller genom dokumenterad handling i ett tidigt skede samt genom att ge praktiska insikter för utövare och intressenter som är involverade i kommersialisering av innovationer.
|
25 |
Développement de patchs perfusables par bioimpression 3D pour une application potentielle dans la régénération de tissu cardiaqueAjji, Zineb 08 1900 (has links)
Les maladies cardiovasculaires sont une des causes de mortalités les plus élevées
mondialement. Parmi celles-ci, on retrouve l’infarctus du myocarde, qui n’a pour
traitement que la transplantation cardiaque. Or, dû à la faible quantité de donneur, une
solution alternative est recherchée. De ce fait, l’ingénierie tissulaire permet le
développement de tissus et d’implants thérapeutiques tels les patchs cardiaques, qui
peuvent être bioimprimés. Or, une des limitations actuelles de l’utilisation d’une telle
stratégie est la vascularisation de tissu bioimprimés.
Dans cette étude, la bioimpression 3D a été utilisée afin de bioimprimer des patchs
perfusables de gélatine méthacrylate (GelMA) à utiliser potentiellement pour le tissu
cardiaque. Il a été possible de développer une bioencre pouvant être utilisée pour une
application dans le tissu cardiaque, d’évaluer l’imprimabilité de l’encre et de bioimprimer
de patchs standards et perfusables. Pour ce faire, GelMA a été synthétisé et les propriétés
mécaniques ont été évaluées pour finalement sélectionner une encre de 10 % GelMA, ayant
un module de Young approprié pour le tissu cardiaque, de 23,7±5,1 kPa. Par la suite, les
processus d’impression, standard et coaxial, de patchs standards et perfusables ont pu être
optimisés. Finalement, des patchs perfusables de GelMA 10% et gélatine 2% ont pu être
imprimés avec une viabilité cellulaire élevée, jusqu’à 79,7±8,7 % et 83,5±5,7 % obtenue
aux jours 1 et 7 de culture respectivement, avec des fibroblastes 3T3. La présence de
canaux vides et la perfusabilité des patchs démontrent le potentiel de cette méthode pour
éventuellement bioimprimer des patchs cardiaques vascularisés épais. / Cardiovascular diseases are a leading cause of death worldwide. Myocardial infarction
captures a significant segment of this population, and the end-stage myocardial infarction
can only be treated by heart transplantation. However, due to the scarcity donors, tissue
engineering has been considered as an alternative solution. Tissue engineering allows the
development of tissues and therapeutic implants such as cardiac patches. However, one of
the main hurdles in the use of such a strategy is the vascularization of bioprinted tissue.
In this study, 3D bioprinting was used to bioprint perfusable gelatin methacrylate (GelMA)
patches for a potential use in cardiac tissue. This work consists in the development of a
bioink that can be used for the cardiac tissue, the evaluation of the printability of the ink,
and the final bioprinting of standard and perfusable patches. For this purpose, GelMA was
synthesized and a final concentration of 10 % was selected as it showed an appropriate
Young's modulus for cardiac tissue, of 23.7±5.1 kPa, while maintaining high
biocompatibility. Subsequently, the printing process of standard and perfusable patches
could be optimized with the use of GelMA and gelatin inks. Finally, 10% GelMA and 2%
gelatin vascularized patches could be printed with high cell viability, of up to 79,7±8,7 %
and 83,5±5,7 % on days 1 and 7 of culture respectively for 3T3 fibroblasts. Additionally,
the presence of hollow channels of the perfusable patches demonstrates the potential of this
method to be eventually applied to the bioprinting of thick vascularized cardiac patches.
|
Page generated in 0.0523 seconds