• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 12
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Automatic Registration of Optical Aerial Imagery to a LiDAR Point Cloud for Generation of Large Scale City Models

Abayowa, Bernard Olushola 30 August 2013 (has links)
No description available.
12

Construction d'un Atlas 3D numérique de la cornée humaine par recalage d'images

Haddeji, Akram 12 1900 (has links)
Nous proposons de construire un atlas numérique 3D contenant les caractéristiques moyennes et les variabilités de la morphologie d’un organe. Nos travaux seront appliqués particulièrement à la construction d'un atlas numérique 3D de la totalité de la cornée humaine incluant la surface antérieure et postérieure à partir des cartes topographiques fournies par le topographe Orbscan II. Nous procédons tout d'abord par normalisation de toute une population de cornées. Dans cette étape, nous nous sommes basés sur l'algorithme de recalage ICP (iterative closest point) pour aligner simultanément les surfaces antérieures et postérieures d'une population de cornée vers les surfaces antérieure et postérieure d'une cornée de référence. En effet, nous avons élaboré une variante de l'algorithme ICP adapté aux images (cartes) de cornées qui tient compte de changement d'échelle pendant le recalage et qui se base sur la recherche par voisinage via la distance euclidienne pour établir la correspondance entre les points. Après, nous avons procédé pour la construction de l'atlas cornéen par le calcul des moyennes des élévations de surfaces antérieures et postérieures recalées et leurs écarts-types associés. Une population de 100 cornées saines a été utilisée pour construire l'atlas cornéen normal. Pour visualiser l’atlas, on a eu recours à des cartes topographiques couleurs similairement à ce qu’offrent déjà les systèmes topographiques actuels. Enfin, des observations ont été réalisées sur l'atlas cornéen reflétant sa précision et permettant de développer une meilleure connaissance de l’anatomie cornéenne. / We propose to build a 3D digital atlas which contains the average characteristics and variability of the morphology of an organ. In particular our work consists in the construction of a 3D digital atlas of the entire human cornea including anterior and posterior surfaces. The atlas was built using topographies provided by the Orbscan II system. First, we normalized the given population of corneas using a variant of the ICP (iterative closest point) algorithm for shape registration to fit simultaneously the anterior and posterior surfaces with the anterior and posterior surfaces of a reference cornea. Indeed, we developed a specific algorithm for corneas topographies that considers scaling during registration and which is based on neighborhood search via the Euclidean distance to find the correspondence between points. After that, we built the corneal atlas by averaging elevations of anterior and posterior surfaces and by calculating their associated standard deviations. A population of 100 healthy corneas was used to construct the normal corneal atlas. To illustrate the atlas, we used topographic color maps like those already offered by existing topographic systems. Finally, observations were made on the corneal atlas that reflects its precision and allows to develop a better understanding of corneal anatomy.
13

Reconstruction 3D du segment antérieur oculaire par échographie haute fréquence / Reconstruction 3D of the anterior eye segment by echography high frequency

Kohandani Tafreshi, Marzieh 17 February 2014 (has links)
Une des applications de l’échographie médicale est celle de l’ophtalmologie qui pose de nombreux problèmes spécifiques liés en partie à la faible dimension de l’oeil et à la précision importante que requièrent les mesures intraoculaires. En effet, avec le développement de la chirurgie réfractive qui regroupe ensemble des techniques capables de corriger les erreurs de réfraction et l’avènement des implants intraoculaires, le chirurgien ophtalmologiste est amené à surveiller la tolérance et les effets secondaires de ces implants sur les structures du segment antérieur. L’échographie à haute fréquence apporte la résolution suffisante pour cette tâche. Cependant, le développement de l’échographie 3D permet une extension des applications ophtalmologiques notamment pour le dimensionnement des implants en préopératoire. La modélisation 3D du segment antérieur permet d’étudier le comportement des implants et surtout de dessiner à terme un implant « sur mesure » pour le patient. C’est dans ce contexte que nous présentons une méthode originale de segmentation et de reconstruction 3D du segment antérieur par échographique haute fréquence en utilisant l’ajustement de modèles 3D. Nous utilisons un système échographique 3D de type main-libre, composé d’une sonde échographique haute fréquence, et d’un module de localisation actif comprenant une caméra et des marqueurs infrarouges. Ce système échographique 3D nous permet d’obtenir des images avec des informations de positionnement dans l’espace tridimensionnel associées. Nous avons ainsi pu mettre en place toute une chaîne d’acquisitions et de traitements des images échographiques. Nous créons, à partir d’images échographiques du segment antérieur oculaire, des modèles de référence 3D réalistes. Nous proposons ainsi une méthode d’ajustement de modèles 3D de référence sur des données 3D échographiques via l’utilisation de l’algorithme de recalage ICP. Nous avons également sélectionné et adapté différentes méthodes pour l’évaluation de l’approche de reconstruction proposée. Ces méthodes permettent de mettre en valeur la précision de ces reconstructions. / Ophthalmology is one of the clinical application fields of ultrasound imaging, for which numerous specific issues arise, related in part to the eye’s small anatomical dimensions combined with the high level of accuracy requirements associated with intraocular measurements. Indeed, since the development of refractive surgery including all the techniques dedicated to the correction of refractive errors, as well as the emergence of intraocular lens (IOL), ophthalmic surgeons have to monitor overall acceptance as well as secondary effects related to these implants on the structures of the anterior eye segment. High frequency ultrasound imaging provides the required spatial resolution for this task. However, the development of 3D ultrasound imaging allows for the development of new applications in ophthalmology, for instance pre-operative dimensioning of the lens. 3D modelling of the anterior eye segment therefore allows studying the IOL behaviour and may help designing future personalized IOL tailored for each patient. Within this context, we present an original 3D segmentation and reconstruction method based on 3D models registration, dedicated to the anterior eye segment acquired in high frequency ultrasound imaging. We used a 3D ultrasound free-hand acquisition system, composed of a high frequency ultrasound probe and a localization module based on a camera and infrared markers. This 3D ultrasound system provides images along with associated 3D spatial positioning information. We were therefore able to develop an entire ultrasound images acquisition and processing chain. This allowed us creating realistic reference 3D models from sequences of ultrasound images of the anterior eye segment. We thus propose a method based on the iterative closest point (ICP) algorithm for the registration of the 3D reference models to 3D ultrasound acquired data. We have also selected and adapted various methods for the evaluation of the proposed reconstruction process. These methods highlight the accuracy of the obtained reconstructions.
14

Construction d'un Atlas 3D numérique de la cornée humaine par recalage d'images

Haddeji, Akram 12 1900 (has links)
Nous proposons de construire un atlas numérique 3D contenant les caractéristiques moyennes et les variabilités de la morphologie d’un organe. Nos travaux seront appliqués particulièrement à la construction d'un atlas numérique 3D de la totalité de la cornée humaine incluant la surface antérieure et postérieure à partir des cartes topographiques fournies par le topographe Orbscan II. Nous procédons tout d'abord par normalisation de toute une population de cornées. Dans cette étape, nous nous sommes basés sur l'algorithme de recalage ICP (iterative closest point) pour aligner simultanément les surfaces antérieures et postérieures d'une population de cornée vers les surfaces antérieure et postérieure d'une cornée de référence. En effet, nous avons élaboré une variante de l'algorithme ICP adapté aux images (cartes) de cornées qui tient compte de changement d'échelle pendant le recalage et qui se base sur la recherche par voisinage via la distance euclidienne pour établir la correspondance entre les points. Après, nous avons procédé pour la construction de l'atlas cornéen par le calcul des moyennes des élévations de surfaces antérieures et postérieures recalées et leurs écarts-types associés. Une population de 100 cornées saines a été utilisée pour construire l'atlas cornéen normal. Pour visualiser l’atlas, on a eu recours à des cartes topographiques couleurs similairement à ce qu’offrent déjà les systèmes topographiques actuels. Enfin, des observations ont été réalisées sur l'atlas cornéen reflétant sa précision et permettant de développer une meilleure connaissance de l’anatomie cornéenne. / We propose to build a 3D digital atlas which contains the average characteristics and variability of the morphology of an organ. In particular our work consists in the construction of a 3D digital atlas of the entire human cornea including anterior and posterior surfaces. The atlas was built using topographies provided by the Orbscan II system. First, we normalized the given population of corneas using a variant of the ICP (iterative closest point) algorithm for shape registration to fit simultaneously the anterior and posterior surfaces with the anterior and posterior surfaces of a reference cornea. Indeed, we developed a specific algorithm for corneas topographies that considers scaling during registration and which is based on neighborhood search via the Euclidean distance to find the correspondence between points. After that, we built the corneal atlas by averaging elevations of anterior and posterior surfaces and by calculating their associated standard deviations. A population of 100 healthy corneas was used to construct the normal corneal atlas. To illustrate the atlas, we used topographic color maps like those already offered by existing topographic systems. Finally, observations were made on the corneal atlas that reflects its precision and allows to develop a better understanding of corneal anatomy.
15

Recalages non-linéaires pour la génération automatique de modèles biomécaniques patients-spécifiques à partir d'imagerie médicale / Non-linear registration for the automatic generation of patient-specific biomechanical models from medical images

Bijar, Ahmad 07 March 2017 (has links)
Les techniques de chirurgie assistée par ordinateur suscitent depuis quelques années un vif intérêt, depuis l’aide au diagnostic jusqu’à l’intervention chirurgicale elle-même, en passant pas les prises de décision. Dans ce but, l’Analyse par Éléments Finis (AEF) du comportement de modèles biomécaniques tridimensionnels est une des méthodes numériques les plus utilisées et les plus efficaces. Cependant, la fiabilité des solutions de l’AEF dépend fortement de la qualité et de la finesse de la représentation des organes sous la forme de maillages d'éléments finis (MEF). Or la génération de tels maillages peut être extrêmement longue et exigeante en ressources computationnelles, car il est nécessaire de procéder à l’extraction précise de la géométrie de l’organe-cible à partir d’images médicales avant de recourir à des algorithmes sophistiqués de maillage. Confrontés à ces enjeux, certains travaux se sont attachés à éviter la procédure de maillage en exploitant des méthodes fondées pour chaque patient sur la déformation géométrique d’un maillage défini sur un sujet de référence, dit « Atlas ». Mais ces méthodes nécessitent toujours une description géométrique précise de l’organe-cible du patient, sous la forme de contours, de modèles surfaciques tridimensionnels ou d’un ensemble de points de référence. Dans ce contexte, le but de la thèse est de développer une méthodologie de conception automatique de maillages « patient-spécifiques », basée sur un Atlas, mais évitant cette étape de segmentation de la géométrie de l’organe-cible du patient. Dans une première partie de la thèse, nous proposons une méthode automatique qui, dans une première phase, procède au recalage volumétrique de l'image anatomique de l’Atlas sur celle du patient, afin d’extraire la transformation géométrique permettant de passer de l’Atlas au patient, puis, dans une seconde phase, déforme le maillage de l’Atlas et l’adapte au patient en lui appliquant cette transformation. Le processus de recalage est conçu de telle manière que la transformation géométrique préserve la régularité et la haute qualité du maillage. L’évaluation de notre méthode, à savoir l'exactitude du processus de recalage inter-sujets, s’est faite en deux étapes. Nous avons d’abord utilisé un ensemble d’images CT de la cage thoracique, en accès libre. Puis nous avons exploité des données IRM de la langue que nous avons recueillies pour deux sujets sains et deux patients souffrant de cancer de la langue, en condition pré- et post-opératoire.Dans une seconde partie, nous développons une nouvelle méthode, toujours basée sur un Atlas, qui exploite à la fois l'information fournie par les images anatomiques et celle relative à la disposition des fibres musculaires telles qu’elle est décrite par imagerie par résonance magnétique du tenseur de diffusion (RM-DT). Cette nouvelle démarche s’appuie ainsi, d’abord sur le recalage anatomique proposé dans notre première méthode, puis sur l’identification et le recalage d’un ensemble de faisceaux de fibres musculaires qui seront ensuite intégrés aux maillages « patient-spécifiques ». Contrairement aux techniques usuelles de recalage d’images RM-DT, qui impliquent pour chaque image la réorientation des tenseurs de diffusion soit au cours de l'estimation de la transformation géométrique, soit après celle-ci, notre technique ne nécessite pas cette réorientation et recale directement les faisceaux de fibres de l’Atlas sur ceux du patient. Notre démarche est très importante, car la détermination et l’identification précises de toutes les sous-structures musculaires nécessiteraient une intervention manuelle pour analyser des milliers, voire des millions, de fibres, qui sont grandement influencées par les limitations et aux distorsions inhérentes aux images RM-DT et aux techniques de tractographie des fibres. L’efficacité de notre méthodologie est démontrée par son évaluation sur un ensemble d’images IRM et RM-DT de la langue d’un sujet. / During the last years, there has been considerable interest in using computer-aided medical design, diagnosis, and decision-making techniques that are rapidly entering the treatment mainstreams. Finite Element Analysis (FEA) of 3D models is one of the most popular and efficient numerical methods that can be utilized for solving complex problems like deformation of soft tissues or orthopedic implant designs/configurations. However, the accuracy of solutions highly depends upon the quality and accuracy of designed Finite Element Meshes (FEMs). The generation of such high-quality subject/patient-specific meshes can be extremely time consuming and labor intensive as the process includes geometry extraction of the target organ and meshing algorithms. In clinical applications where the patient specifiity has to be taken into account via the generation of adapted meshes these problems become methodological bottlenecks. In this context, various studies have addressed these challenges by bypassing the meshing phase by employing atlas-based frameworks using the deformation of an atlas FE mesh. However, these methods still rely on the geometrical description of the target organ, such as contours, 3D surface models, or a set of land-marks.In this context, the aim of this thesis is to investigate how registration techniques can overcome these bottlenecks of atlas-based approaches.We first propose an automatic atlas-based method that includes the volumetric anatomical image registration and the morphing of an atlas FE mesh. The method extracts a 3D transformation by registering the atlas' volumetric image to the subject's one. The subject-specific mesh is then generated by deforming a high-quality atlas FE mesh using the derived transformation. The registration process is designed is such a way to preserve the regularity and the quality of meshes for subsequent FEAs. A first step towards the evaluation of our approach, namely the accuracy of the inter-subject registration process, is provided using a data set of CT ribcage. Then, subject-specific tongue meshes are generated for two healthy subjects and two patients suffering from tongue cancer, in pre- and post-surgery conditions. In order to illustrate a tentative fully automatic process compatible with the clinical constraints, some functional consequences of a tongue surgery are simulated for one of the patients, where the removal of the tumor and the replacement of the corresponding tissues with a passive flap are modeled. With the extraction of any formal priorknowledge on the shape of the target organ and any meshing algorithm, high-quality subject-specific FE meshes are generated while subject’s geometrical properties are successfully captured.Following this method, we develop an original atlas-based approach that employs the information provided by the anatomical images and diffusion tensor imaging (DTI) based muscle fibers for the recognition and registration of fiber-bundles that can be integrated in the subject-specific FE meshes. In contrast to the DT MR images registration techniques that include reorientation of tensors within or after the transformation estimation, our methodology avoids this issue and directly aligns fiber-bundles. This also enables one to handel limited or distorted DTIs by deformation of an atlas fibers’ structure according to the most reliable and non-distorted subject’s ones. Such a manner becomes very important, since the classification and the determination of muscular sub-structures need manual intervention of thousands or millions of fibers for each subject, which are influenced by the limitations associated with the DTI image acquisition process and fiber tractography techniques. To evaluate the performance of our method in the recognition of subject’s fiber-bundles and accordingly in the deformation of the atlas ones, a simulated data set is utilized. In addition, feasibility of our method is demonstrated on acquired human tongue data set.
16

Modélisation anatomique utilisateur-spécifique et animation temps-réel : Application à l'apprentissage de l'anatomie / User-specific real-time registration and tracking applied to anatomy learning.

Bauer, Armelle 10 November 2016 (has links)
La complexité de l’anatomie fait de son apprentissage une tâche difficile. Au fil des années, différents supports de connaissances ont vu le jour dans le but de représenter et structurer l’anatomie : des dessins au tableau, aux livres d’anatomie, en passant par l’étape incontournable de la dissection, et des travaux pratiques sur maquettes 3d. Il est néanmoins difficile d’appréhenderla dimension dynamique de l’anatomie avec les outils d’apprentissage conventionnels ; connaissance qui est pourtant essentielle à la formation des médecins. A travers ces travaux de thèse nous proposons un système original et innovant pour l’apprentissage de l’anatomie intitulé « Living Book of Anatomy » (LBA). L’idée étant, pour un utilisateur donné, de superposer à sa propre image une maquette anatomique 3d (peau, squelette, muscles et viscères) et del’animer en mimant les mouvements de celui-ci. Nous parlons ici d’une application temps-réel de type « miroir augmenté ». Nous utilisons la Kinect comme capteur de mouvement.Le premier défi à relever est l’identification de caractéristiques morphologiques qui nous permettront de recaler notre maquette anatomique 3d sur l’utilisateur. Nous proposons ici deux technologies interchangeables en fonction des besoins. La première méthode, temps-réel, est basée sur l’utilisation de transformations affines attachées entre les repères positionnés à chaque articulation du squelette donné par la Kinect pour déformer la maquette 3d à l’aide de poids de skinning prédéfinis. La seconde méthode, plus couteuse en temps (de l’ordre de quelques minutes), se découpe en trois parties : dans un premier temps nous déformons la peau à l’aide de la position des articulations du squelette d’animation Kinect et du nuage de pointpartiel de l’utilisateur ; à partir de cela et de règles anatomiques strictes nous déformons le squelette ; pour finir nous déformons les tissus mous pour qu’ils comblent l’espace entre le squelette et la peau. Le second défi concerne la capture réaliste et temps-réel des mouvements utilisateurs. Reproduire le comportement des structures anatomiques est une tâche complexe due aux informations Kinect souvent partielles et très bruitées. Nous proposons ici l’utilisation de règles anatomiques concernant les articulations du corps (axes de rotation et butées articulaires) pour contraindre les mouvements donnés par la Kinect et obtenir des mouvements réalistes. Pour obtenir des mouvements fluides nous nous proposons d’utiliser des filtrages, notamment le filtre de Kalman. Le dernier défi concerne la dominante de retour visuel et d’interaction.Lors de ces travaux nous nous sommes tout particulièrement intéressés à un renducorps complet pour montrer le fonctionnement général du corps humain et de ces différentes articulations. Nous avons également choisi le membre inférieur comme structure anatomique d’intérêt avec pour but la mise en avant de phénomènes anatomiques spécifiques, comme l’activité musculaire.Les différents éléments ont été intégrés dans un système opérationnel présenté en détails dans ce manuscrit de thèse. Grâce à des expérimentations - avec des étudiants et des professionnels de différents domaines - et la présentation de ces travaux sous forme de démonstrations lors de différents congrès, nous avons validé cet outil / To ease the complex task of anatomy learning, there exist many ways to represent and structure anatomy : illustrations, books, cadaver dissections and 3d models. However, it is difficult to understand and analyse anatomy motion, which is essential for medicine students. We present the "Living Book of Anatomy" (LBA), an original and innovative tool to learn anatomy. For a specific user, we superimpose a 3d anatomical model (skin, skeleton, muscles and visceras) onto the user’s color map and we animate it following the user’s movements. We present a real-time mirror-like augmented reality (AR) system. A Kinect is used to capturebody motions.The first innovation of our work is the identification of the user’s body measurements to register our 3d anatomical model. We propose two different methods to register anatomy.The first one is real-time and use affine transformations attached to rigid positioned on each joint given by the Kinect body tracking skeleton in order to deform the 3d anatomical model using skinning to fit the user’s measurements.The second method needs a few minutes to register the anatomy and is divided in 3 parts : skin deformation (using Kinect body tracking skeleton and the Kinect partial point cloud), with it and strict anatomical rules we register the skeleton. Lastly we deformm the soft tissues to completly fill the space inbetween the registered skeleton and skin.Secondly, we want to capture realistically and in real-time the user’s motion. To do that we need to reproduce anatomical structure motion but it is a complex task due to the noisy and often partial Kinect data. We propose here the use of anatomical rules concerning body articulations (angular limits and degrees of freedom) to constraint Kinect captured motion in order to obtain/gain plausible motions. a kalman filter is used to smooth the obtaiined motion capture.Lastly, to embed visual style and interaction, we use a full body reproduction to show general knowledge on human anatomy and its differents joints. We also use a lower-limb as structure of interest to higlight specific anatomical phenomenon, as muscular activity.All these tools have been integrated in a working system detailed in this thesis.We validated our tool/system by presenting it as a live demo during different conferences and through user studies done with students and professionnals from different backgrounds
17

A Multiview Extension Of The ICP Algorithm

Pooja, A 01 1900 (has links) (PDF)
The Iterative Closest Point (ICP) algorithm has been an extremely popular method for 3D points or surface registration. Given two point sets, it simultaneously solves for correspondences and estimates the motion between these two point sets. However, by only registering two such views at a time, ICP fails to exploit the redundant information available in multiple views that have overlapping regions. In this thesis, a multiview extension of the ICP algorithm is provided that simultaneously averages the redundant information available in the views with overlapping regions. Variants of this method that carry out such simultaneous registration in a causal manner and that utilize the transitivity property of point correspondences are also provided. The improved accuracy in registration of these motion averaged approaches in comparison with the conventional ICP method is established through extensive experiments. In addition, the motion averaged approaches are compared with the existing multiview techniques of Bergevin et. al. and Benjemaa et. al. The results of the methods applied to the Happy Buddha and the Stanford Bunny datasets of 3D Stanford repository and to the Pooh and the Bunny datasets of the Ohio (MSU/WSU) Range Image database are also presented.
18

Alignement de données 2D, 3D et applications en réalité augmentée. / 2D, 3D data alignment and application in augmented reality

El Rhabi, Youssef 12 June 2017 (has links)
Ette thèse s’inscrit dans le contexte de la réalité augmentée (RA). La problématique majeure consiste à calculer la pose d’une caméra en temps réel. Ce calcul doit être effectué en respectant trois critères principaux : précision, robustesse et rapidité. Dans le cadre de cette thèse, nous introduisons certaines méthodes permettant d’exploiter au mieux les primitives des images. Dans notre cas, les primitives sont des points que nous allons détecter puis décrire dans une image. Pour ce faire, nous nous basons sur la texture de cette image. Nous avons dans un premier temps mis en place une architecture favorisant le calcul rapide de la pose, sans perdre en précision ni en robustesse. Nous avons pour cela exploité une phase hors ligne, où nous reconstruisons la scène en 3D. Nous exploitons les informations que nous obtenons lors de cette phase hors ligne afin de construire un arbre de voisinage. Cet arbre lie les images de la base de données entre elles. Disposer de cet arbre nous permet de calculer la pose de la caméra plus efficacement en choisissant les images de la base de données jugées les plus pertinentes. Nous rendant compte que la phase de description et de comparaison des primitives n’est pas suffisamment rapide, nous en avons optimisé les calculs. Cela nous a mené jusqu’à proposer notre propre descripteur. Pour cela, nous avons dressé un schéma générique basé sur la théorie de l’information qui englobe une bonne part des descripteurs binaires, y compris un descripteur récent nommé BOLD [BTM15]. Notre objectif a été, comme pour BOLD, d’augmenter la stabilité aux changements d’orientation du descripteur produit. Afin de réaliser cela, nous avons construit un nouveau schéma de sélection hors ligne plus adapté à la procédure de mise en correspondance en ligne. Cela permet d’intégrer ces améliorations dans le descripteur que nous construisons. Procéder ainsi permet d’améliorer les performances du descripteur notamment en terme de rapidité en comparaison avec les descripteurs de l’état de l’art. Nous détaillons dans cette thèse les différentes méthodes que nous avons mises en place afin d’optimiser l’estimation de la pose d’une caméra. Nos travaux ont fait l’objet de 2 publications (1 nationale et 1 internationale) et d’un dépôt de brevet. / This thesis belongs within the context of augmented reality. The main issue resides in estimating a camera pose in real-time. This estimation should be done following three main criteria: precision, robustness and computation efficiency.In the frame of this thesis we established methods enabling better use of image primitives. As far as we are concerned, we limit ourselves to keypoint primitives. We first set an architecture enabling faster pose estimation without loss of precision or robustness. This architecture is based on using data collected during an offline phase. This offline phase is used to construct a 3D point cloud of the scene. We use those data in order to build a neighbourhood graph within the images in the database. This neighbourhood graph enables us to select the most relevant images in order to compute the camera pose more efficiently. Since the description and matching processes are not fast enough with SIFT descriptor, we decided to optimise the bottleneck parts of the whole pipeline. It led us to propose our own descriptor. Towards this aim, we built a framework encompassing most recent binary descriptors including a recent state-of-the-art one named BOLD. We pursue a similar goal to BOLD, namely to increase the stability of the produced descriptors with respect to rotations. To achieve this goal, we have designed a novel offline selection criterion which is better adapted to the online matching procedure introduced in BOLD.In this thesis we introduce several methods used to estimate camera poses more efficiently. Our work has been distinguished by two publications (a national and an international one) as well as with a patent application.
19

Moving Least Squares Correspondences for Iterative Point Set Registration

Dutta, Somnath 16 October 2019 (has links)
Registering partial shapes plays an important role in numerous applications in the fields of robotics, vision, and graphics. An essential problem of registration algorithms is the determination of correspondences between surfaces. In this paper, we provide a in-depth evaluation of an approach that computes high-quality correspondences for pair-wise closest point-based iterative registration and compare the results with state-of-the-art registration algorithms. Instead of using a discrete point set for correspondence search, the approach is based on a locally reconstructed continuous moving least squares surface to overcome sampling mismatches in the input shapes. Furthermore, MLS-based correspondences are highly robust to noise. We demonstrate that this strategy outperforms existing approaches in terms of registration accuracy by combining it with the SparseICP local registration algorithm. Our extensive evaluation over several thousand scans from different sources verify that MLS-based approach results in a significant increase in alignment accuracy, surpassing state-of-theart feature-based and probabilistic methods. At the same time, it allows an efficient implementation that introduces only a modest computational overhead.
20

Intégration de systèmes d'acquisition de données spatiales et spectrales haute résolution, dans le cadre de la génération d'informations appliquées à la conservation du patrimoine / Integration of high resolution spatial and spectral data acquisition systems for monitoring purposes in cultural heritage applications

Simon Chane, Camille 26 March 2013 (has links)
Cette thèse s'intéresse au recalage de données issues de capteurs 3D et multispectraux pour l'étude du patrimoine.Lorsque l'on étudie ce type d'objet, il y a souvent peu de points saillants naturels entre ces jeux de données complémentaires. Par ailleurs, l'utilisation de mires optiques est proscrite.Notre problème est donc de recaler des données multimodales sans points caractéristiques.Nous avons développé une méthode de recalage basé sur le suivi des systèmes d'acquisition en utilisant des techniques issues de la photogrammétrie.Des simulations nous ont permis d'évaluer la précision de la méthode dans trois configurations qui représentent des cas typiques dans l'étude d'objets du patrimoine.Ces simulations ont montré que l'on peut atteindre une précision du suivi de 0.020 mm spatialement et 0.100 mrad angulairement en utilisant quatre caméras 5 Mpx lorsque l'on numérise une zone de 400 mm x 700 mm.La précision finale du recalage repose sur le succès d'une série de calibrations optiques et géométriques, ainsi que sur leur stabilité pour la durée du processus d'acquisition.Plusieurs tests ont permis d'évaluer la précision du suivi et du recalage de plusieurs jeux de données indépendants; d'abord seulement 3D, puis 3D et multispecrales.Enfin, nous avons étendu notre méthode d'estimation de la réflectance à partir des données multispectrales lorsque celles-ci sont recalées sur un modèle 3D. / The concern and interest of this PhD thesis is the registration of featureless 3D and multispectral datasets describing cultural heritage objects.In this context, there are few natural salient features between the complementary datasets, and the use of targets is generally proscribed.We thus develop a technique based on the photogrammetric tracking of the acquisition systems in use.A series of simulations was performed to evaluate the accuracy of our method in three configurations chosen to represent a variety of cultural heritage objects.These simulations show that we can achieve a spatial tracking accuracy of 0.020 mm and an angular accuracy of 0.100 mrad using four 5 Mpx cameras when digitizing an area of 400 mm x 700 mm. The accuracy of the final registration relies on the success of a series of optical and geometrical calibrations and their stability for the duration of the full acquisition process.The accuracy of the tracking and registration was extensively tested in laboratory settings. We first evaluated the potential for multiview 3D registration. Then, the method was used for to project of multispectral images on 3D models.Finally, we used the registered data to improve the reflectance estimation from the multispectral datasets

Page generated in 0.5629 seconds