• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Minimizing Test Time through Test FlowOptimization in 3D-SICs

DASH, ASSMITRA January 2013 (has links)
3D stacked ICs (3D-SICs) with multiple dies interconnected by through-silicon-vias(TSVs) are considered as a technology driver and proven to have overwhelming advantagesover traditional ICs with a single die in a package in terms of performance, powerconsumption and silicon overhead. However, these “super chips” bring new challengesto the process of IC manufacturing; among which, testing 3D-SICs is the major andmost complex issue to deal with. In traditional ICs, tests can usually be performedat two stages (test instances), namely: a wafer sort and a package test. Whereas for3D-SICs, tests can be performed after each stacking event where a new die is stackedover a partial stack. This expands the set of available test instances. A combination ofselected test instances where a test is performed (active test instance) is known as a testflow. Test time is a major contributor to the total test cost. Test time changes with theselected test flow. Therefore, choosing a cost effective test flow which will minimizesthe test time is absolutely essential.This thesis focuses on finding an optimal test flow which minimizes the test timefor a given 3D-SIC. A mathematical model has been developed to evaluate the test timeof any test flow. Then a heuristic has been proposed for finding a near optimal test flowwhich minimizes the test time. The performance of this approach in terms of computationtime and efficiency has been compared against the minimum test time obtainedby exhaustive search. The heuristic gives good results compared to exhaustive searchwith much lesser computation time.
2

Design-for-Test and Test Optimization Techniques for TSV-based 3D Stacked ICs

Noia, Brandon Robert January 2014 (has links)
<p>As integrated circuits (ICs) continue to scale to smaller dimensions, long interconnects</p><p>have become the dominant contributor to circuit delay and a significant component of</p><p>power consumption. In order to reduce the length of these interconnects, 3D integration</p><p>and 3D stacked ICs (3D SICs) are active areas of research in both academia and industry.</p><p>3D SICs not only have the potential to reduce average interconnect length and alleviate</p><p>many of the problems caused by long global interconnects, but they can offer greater design</p><p>flexibility over 2D ICs, significant reductions in power consumption and footprint in</p><p>an era of mobile applications, increased on-chip data bandwidth through delay reduction,</p><p>and improved heterogeneous integration.</p><p>Compared to 2D ICs, the manufacture and test of 3D ICs is significantly more complex.</p><p>Through-silicon vias (TSVs), which constitute the dense vertical interconnects in a</p><p>die stack, are a source of additional and unique defects not seen before in ICs. At the same</p><p>time, testing these TSVs, especially before die stacking, is recognized as a major challenge.</p><p>The testing of a 3D stack is constrained by limited test access, test pin availability,</p><p>power, and thermal constraints. Therefore, efficient and optimized test architectures are</p><p>needed to ensure that pre-bond, partial, and complete stack testing are not prohibitively</p><p>expensive.</p><p>Methods of testing TSVs prior to bonding continue to be a difficult problem due to test</p><p>access and testability issues. Although some built-in self-test (BIST) techniques have been</p><p>proposed, these techniques have numerous drawbacks that render them impractical. In this dissertation, a low-cost test architecture is introduced to enable pre-bond TSV test through</p><p>TSV probing. This has the benefit of not needing large analog test components on the die,</p><p>which is a significant drawback of many BIST architectures. Coupled with an optimization</p><p>method described in this dissertation to create parallel test groups for TSVs, test time for</p><p>pre-bond TSV tests can be significantly reduced. The pre-bond probing methodology is</p><p>expanded upon to allow for pre-bond scan test as well, to enable both pre-bond TSV and</p><p>structural test to bring pre-bond known-good-die (KGD) test under a single test paradigm.</p><p>The addition of boundary registers on functional TSV paths required for pre-bond</p><p>probing results in an increase in delay on inter-die functional paths. This cost of test</p><p>architecture insertion can be a significant drawback, especially considering that one benefit</p><p>of 3D integration is that critical paths can be partitioned between dies to reduce their delay.</p><p>This dissertation derives a retiming flow that is used to recover the additional delay added</p><p>to TSV paths by test cell insertion.</p><p>Reducing the cost of test for 3D-SICs is crucial considering that more tests are necessary</p><p>during 3D-SIC manufacturing. To reduce test cost, the test architecture and test</p><p>scheduling for the stack must be optimized to reduce test time across all necessary test</p><p>insertions. This dissertation examines three paradigms for 3D integration - hard dies, firm</p><p>dies, and soft dies, that give varying degrees of control over 2D test architectures on each</p><p>die while optimizing the 3D test architecture. Integer linear programming models are developed</p><p>to provide an optimal 3D test architecture and test schedule for the dies in the 3D</p><p>stack considering any or all post-bond test insertions. Results show that the ILP models</p><p>outperform other optimization methods across a range of 3D benchmark circuits.</p><p>In summary, this dissertation targets testing and design-for-test (DFT) of 3D SICs.</p><p>The proposed techniques enable pre-bond TSV and structural test while maintaining a</p><p>relatively low test cost. Future work will continue to enable testing of 3D SICs to move</p><p>industry closer to realizing the true potential of 3D integration.</p> / Dissertation

Page generated in 0.0144 seconds