1 |
Double Angle Framing Connections Subjected to Shear and TensionYang, Jae-Guen 08 July 1997 (has links)
The double angle connection (sometimes referred to as a cleat connection) is one of the most commonly used simple shear connections, and many investigations have been conducted on this type of connection. However, most of these investigations have focused on either the strength or the moment-rotation relationship under shear loading. Several investigations have recently been performed on the behavior of double angle connections subjected to shear plus axial tensile loads. In these investigations, analytical models and design formulas have been proposed to model the complex behavior of these connections when subjected to the combined loading. However, a complete design model has not been developed.
To fulfill the need for a design procedure, double angle connections were studied for three different loading cases. The first case was used to establish the load-displacement relationship under axial tensile loads. The second case was to establish the moment-rotation relationship under shear loads. Finally, the third case was to find the effects of combined axial tensile loads and shear loads on the behavior of double angle connections.
For these purposes, 3D-nonlinear finite element models were developed to simulate the connection behavior under the three loading cases. The commercial software package, ABAQUS, was used for the study. The complex phenomena of contact problems and the pretension forces in the bolts were simulated. A simplified angle model and an equivalent spring model were developed from the 3D results. / Ph. D.
|
2 |
Stability Analysis of Embankments Founded on Clay : a comparison between LEM & 2D/3D FEMHabibnezhad, Zhaleh January 2014 (has links)
Rapid constructed embankments founded on soft deposits have a negative influence on the short term stability. Many engineering constructions such as road and railway embankments are often constructed on soft clay deposits. In stability analysis calculation of safety factor (SF), as the primary design criteria can be evaluated through different numerous methods such as limit equilibrium method (LEM) and finite element method (FEM). It is of particular interest to determine/estimate appropriate stability of the specified embankment which is highly dependent on the analysis method used. Therefore, it is a challenge for geotechnical engineers to judge which analysis method can simulate better the reality. The aim of this thesis is to increase understanding applicability of the three applied programs; Plaxis2D, Plaxis3D and Slope/W in simulating and stability analysis/estimation of embankments founded on clay deposits. The work has involved analysis and comparison of the stability through estimate of the SF and the critical failure surfaces obtained through 2D and 3D programs. Four case configurations were studied for the stability analysis. In each case variation in plastic parameters of clay (φ-c) or load geometry, was the scenario to make the comparison analysis. Moreover, application FEM3D offers an attractive alternative to traditional approaches to the problem (especially for LEM). The main conclusions from this study are the following: (1) Concerning the three applied programs, FEM3D has the minimum SF sensitivity to change in plastic parameters of clay deposit. (2) For embankments founded on clay deposit, the 3D failure surfaces are easily found via the FEM3D analysis program, which is closer to reality, while failure results of 2D analysis programs can never occur in reality. (3) Using 2D analysis method instead of 3D, to investigate the stability of 3D embankment model tend to give higher SF results up to 14% for embankments founded on undrained clay deposit. (4) The failure surfaces in 3D analysis are likely to be shallower than in the corresponding 2D model. (5) Results from the 3D analysis through hand calculation and program calculation do not correspond with each other for embankment founded on soft clay deposit. The first reason is rooted in limitation of the hand formula. The formula is suitable for embankment founded on one layer deposit (soil); however an embankment founded on 3 layers of deposit (soil) was analyzed in this study. The second reason is related to applied method of calculation. 3D hand calculation formula is based on method of slices however; analysis method in program calculation is based on FEM.
|
3 |
TUNNEL BEHAVIOR UNDER COMPLEX ANISOTROPIC CONDITIONSOsvaldo Paiva Maga Vitali (8842580) 15 May 2020 (has links)
Rock masses may present
remarked geostatic stress anisotropy and anisotropic material properties; thus,
the tunnel alignment with the geostatic principal stress directions and with
the axes of material anisotropy is unlikely. Nevertheless, tunnel design often
neglects those misalignments and; yet, the misalignment effects were unknown.
In this doctoral research, tunnels under complex anisotropic conditions were
modelled analytically and numerically with 3D nonlinear Finite Element Method
(FEM). When the tunnel misaligns with the geostatic principal stress
directions, anti-symmetric axial displacements and shear stresses are induced
around the tunnel. Analytical solutions for misaligned shallow and deep tunnels
in isotropic elastic ground are provided. The analytical solutions were
validated with 3D FEM analyses. Near the face, the anti-symmetric axial
displacements are partially constrained by the tunnel face, producing
asymmetric radial displacements and stresses. The asymmetric radial
displacements at the face can be divided into a rigid body displacement of the
tunnel cross-section and anti-symmetric radial displacements. Those asymmetries
may affect the rock-support interaction and the plastic zone developed around
the tunnel. In anisotropic rock masses, the tunnel misalignment with the axes
of material anisotropy also produces anti-symmetric axial displacements and
stresses around the tunnel. It occurs because when the tunnel is not aligned
with the principal material directions, the in-plane stresses are coupled with
the axial displacements (i.e. the compliance matrix is fully populated). Thus,
tunnels in anisotropic rock mass not aligned with the geostatic principal
stresses and with the axes of material anisotropy are substantially more
complex than tunnels not aligned with the principal stress directions in
isotropic rock mass. An analytical solution for misaligned tunnels in
anisotropic rock mass is provided. It was observed that the relative
orientation of the geostatic principal stresses with respect to the axes of
material anisotropy plays an important role. The axial displacements produced
by far-field axial shear stresses and by the rock mass anisotropy may
compensate each other; thus, axial and radial displacements around the tunnel
are reduced. On the other hand, those anti-symmetric axial displacements may be
amplified; thus, the ground deformations are increased. Asymmetric radial and
axial deformations, and asymmetric spalling of the tunnel walls are commonly
observed on tunnels in anisotropic rock masses. The tunnel misalignment with
the geostatic principal stress directions and with the axes of material
anisotropy could be associated with those phenomena that, so far, are not well
comprehended
|
4 |
A Simplified Model for Lateral Response of Caisson FoundationsVarun 20 November 2006 (has links)
Caisson or pier foundations are encountered as part of the foundation system of tall structures such as bridges, transmission towers, heliostats, etc, and correspond to rigid blocks of length-to-diameter (D/B) ratio on the order of D/B = 2-6. As a result of their geometry and stiffness characteristics, the mechanisms of load transfer from the superstructure to the surrounding soil and their kinematic response to seismic wave propagation are governed by a complex stress distribution at the pier-soil interface, which cannot be adequately represented by means of simplified Winkler models for shallow foundations or flexible piles. Continuum model solutions, such as 3D finite elements (FE) cannot be employed frequently in practice for the design of non-critical facilities due to the cost and effort associated with these analyses. The objective of this work is to develop a Winkler-type model for the analysis of transversely-loaded caissons, which approximately accounts for all the main soil resistance mechanisms mobilized, while retaining the advantages of simplified methodologies for design at intermediate levels of target accuracy. Investigation of the governing load-transfer mechanisms and development of complex spring functions is formulated on the basis of 3D FE simulations. Initially, the soil-structure stiffness matrix is computed by subjecting the pier to transverse static and dynamic loading at the top, and numerically estimating the response. Complex frequency-dependent functions are next developed for the spring constants by equating the stiffness matrix terms to the analytical expressions developed for the four-spring model. Sensitivity analyses are conducted for optimization of the truncated numerical domain size, finite element size and far-field dynamic boundary conditions to avoid spurious wave reflections. Simulations are next conducted to evaluate the transient response of the foundation subjected to vertically propagating shear waves, and results are compared to the response predicted by means of the 4-spring model. Finally, the applicability of the method is assessed for soil profiles with depth-varying properties. While the methodology developed is applicable for linear elastic media with no material damping, the expressions of complex spring functions may be extended to include hysteretic damping, nonlinear soil behavior and soil-foundation interface separation, as shown in the conclusions.
|
5 |
Extension Of Stress-Based Finite Element Model Using Resilient Modulus Material Characterization To Develop A Theoretical Framework for Realistic Response Modeling of Flexible Pavements on Cohesive Subgrades.Parris, Kadri 20 October 2015 (has links)
No description available.
|
6 |
Elektrische Antriebe in mobilen ArbeitsmaschinenSchuffenhauer, Uwe, Michalke, Norbert 18 June 2014 (has links) (PDF)
Neue elektrische Antriebskonzepte ermöglichen es, eine hohe Funktionalität in einem eingeschränkten Bauraum unterzubringen. Damit steigt auch in der Landwirtschaft das Interesse an elektrischen Antrieben. Die Projektgruppe Elektrische Maschinen und Antriebe der HTW Dresden beteiligt sich mit der TU Dresden an einem Projekt, bei dem beginnend mit der elektrisch angetriebenen Dreschtrommel umfassend an einem Mähdrescher untersucht wird, wie diese Antriebe in einzelne Funktionselemente integriert werden können.
Neben der Auslegung der Antriebe werden Verfahren erarbeitet, die Verluste im Motor mit hoher Genauigkeit zu berechnen. So können in Zukunft passgenaue Kühlkonzepte für diese Antriebstechnik entwickelt werden.
Anforderungen gerade im Bereich der Elektromobilität fordern den Blick für neue Materialien, deren elektromagnetisches und thermisches Verhalten werden in ihrem Einfluss auf die Erwärmung untersucht. Analytische und kombinierte Berechnungsmethoden in 2D-FEM gestatten die vereinfachte Rechnung unter Berücksichtigung von Grundwelle und entstehenden Harmonischen zu qualifizieren. Verlustberechnungen aus der transienten FEM-Rechnung ermöglichen diese Verbesserung. Die Methode wird am Beispiel der elektrischen Dreschtrommel mit den berechneten Verlustverteilungen beschrieben. Neue Methoden der 3D-FEM, wie sie die Software Ansys bietet, werden für die Nutzung von Einflüssen der Wirbelstromeffekte und in Auswertung für die Segmentierung von Permanentmagneten dargestellt.
Die exemplarisch gewonnenen Erkenntnisse liefern einen Beitrag für weitere Schneidwerksantriebe am Mähdrescher, aber auch darüber hinaus in Projekten mit Herstellern elektrischer Maschinen. / New concepts for electrical drives make it possible to put a high functionality into a restricted structural form. Thereby the interest in electrical drives increases also in the farming. The project team Electrical machines and drives of the HTW Dresden participates together with the TU Dresden in a project, where starting with the electrically driven threshing cylinder is comprehensively examined at a combine harvester, how these drives can be integrated into single function elements. Besides the dimensioning of the drives are developed methods to calculate losses in the engine with high precision. So custom-fit cooling concepts can be developed for this drive technology in future.
Requirements just in the area of the electric mobility call looking for new materials, whose electromagnetic and thermic behavior are examined in her influence on the warming. Analytical and combined computation methods in 2D-FEM allow the simplified calculation under consideration of the fundamental wave and the arising harmonic ones. Loss calculations by means of the transient FEM calculation make possible this improvement. The method is described at the example of the electrical threshing cylinder with the calculated loss distributions. New methods of the 3D-FEM, as the software of Ansys offers, are presented for the use of influences of the eddy current effects and in evaluation for the segmentation of permanent magnets.
The exemplarily got knowledge provides a contribution for further cut header drives at the combine but also furthermore in projects together with manufacturers of electrical machines.
|
7 |
Elektrische Antriebe in mobilen Arbeitsmaschinen: Berechnungsverfahren für Wirbelstromverluste in Magneten als Beispiel der Forschung an aktuellen elektrischen MaschinenSchuffenhauer, Uwe, Michalke, Norbert 18 June 2014 (has links)
Neue elektrische Antriebskonzepte ermöglichen es, eine hohe Funktionalität in einem eingeschränkten Bauraum unterzubringen. Damit steigt auch in der Landwirtschaft das Interesse an elektrischen Antrieben. Die Projektgruppe Elektrische Maschinen und Antriebe der HTW Dresden beteiligt sich mit der TU Dresden an einem Projekt, bei dem beginnend mit der elektrisch angetriebenen Dreschtrommel umfassend an einem Mähdrescher untersucht wird, wie diese Antriebe in einzelne Funktionselemente integriert werden können.
Neben der Auslegung der Antriebe werden Verfahren erarbeitet, die Verluste im Motor mit hoher Genauigkeit zu berechnen. So können in Zukunft passgenaue Kühlkonzepte für diese Antriebstechnik entwickelt werden.
Anforderungen gerade im Bereich der Elektromobilität fordern den Blick für neue Materialien, deren elektromagnetisches und thermisches Verhalten werden in ihrem Einfluss auf die Erwärmung untersucht. Analytische und kombinierte Berechnungsmethoden in 2D-FEM gestatten die vereinfachte Rechnung unter Berücksichtigung von Grundwelle und entstehenden Harmonischen zu qualifizieren. Verlustberechnungen aus der transienten FEM-Rechnung ermöglichen diese Verbesserung. Die Methode wird am Beispiel der elektrischen Dreschtrommel mit den berechneten Verlustverteilungen beschrieben. Neue Methoden der 3D-FEM, wie sie die Software Ansys bietet, werden für die Nutzung von Einflüssen der Wirbelstromeffekte und in Auswertung für die Segmentierung von Permanentmagneten dargestellt.
Die exemplarisch gewonnenen Erkenntnisse liefern einen Beitrag für weitere Schneidwerksantriebe am Mähdrescher, aber auch darüber hinaus in Projekten mit Herstellern elektrischer Maschinen. / New concepts for electrical drives make it possible to put a high functionality into a restricted structural form. Thereby the interest in electrical drives increases also in the farming. The project team Electrical machines and drives of the HTW Dresden participates together with the TU Dresden in a project, where starting with the electrically driven threshing cylinder is comprehensively examined at a combine harvester, how these drives can be integrated into single function elements. Besides the dimensioning of the drives are developed methods to calculate losses in the engine with high precision. So custom-fit cooling concepts can be developed for this drive technology in future.
Requirements just in the area of the electric mobility call looking for new materials, whose electromagnetic and thermic behavior are examined in her influence on the warming. Analytical and combined computation methods in 2D-FEM allow the simplified calculation under consideration of the fundamental wave and the arising harmonic ones. Loss calculations by means of the transient FEM calculation make possible this improvement. The method is described at the example of the electrical threshing cylinder with the calculated loss distributions. New methods of the 3D-FEM, as the software of Ansys offers, are presented for the use of influences of the eddy current effects and in evaluation for the segmentation of permanent magnets.
The exemplarily got knowledge provides a contribution for further cut header drives at the combine but also furthermore in projects together with manufacturers of electrical machines.
|
Page generated in 0.0196 seconds