Spelling suggestions: "subject:"3T3-L1 cells"" "subject:"3T3-L1 wells""
1 |
Ethnic differences in adipogenesis and the role of alkaline phosphatase in the control of adipogenesis in human preadipocytes and 3T3-L1 cellsAli, Aus Tarig 07 1900 (has links)
A thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in fulfilment of the requirement for the degree of Doctor of Philosophy.
Johannesburg, 2004 / Alkaline phosphatase (ALP) is a ubiquitously expressed enzyme, that has been shown to play a role in cell differentiation and organogenesis. One study has also demonstrated ALP activity in rat adipocytes. The purpose of the present study was therefore to determine whether ALP is expressed in preadipocytes and what role it may have in adipogenesis. ALP activity was detected in the murine preadipocyte cell line, 3T3-L1, and in human preadipocytes isolated from mammary tissue, and from subcutaneous abdominal fat depots. In all the cell types studied ALP activity increased in parallel with adipogenesis. In the 3T3 -L1 cell line the tissue- non -specific ALP inhibitors, levamisole and histidine inhibited ALP activity, and adipogenesis, whereas the tissue specific ALP inhibitor Phe- Gly-Gly did not inhibit ALP or adipogenesis.
In human preadipocytes, histidine inhibited adipogenesis and ALP activity,
whereas levamisole inhibited adipogenesis, but did not block ALP
activity in intact cells. However, levamisole did inhibit ALP activity by 50% in cell
extracts. Levamisole was able to inhibit adipogenesis in human
preadipocytes. The tissue specific ALP inhibitor, Phe Gly Gly, did not
inhibit ALP activity or adipogenesis in human preadipocytes.
ALP activity and adipogenesis, were compared in preadipocytes isolated from mammary tissue taken from black (13) and white (15) female subjects. Both ALP activity and adipogenesis, were lower in white compared to black female subjects.
iii
Immunocytochemical, analysis of the 3T3-L1 cell line and human preadipocytes demonstrated that ALP activity was restricted to the lipid droplets of these cells.
ALP activity was also measured in serum samples obtained from 100 African subjects (74 females and 26 males) of varying BMI. ALP activity was found to be higher in obese than lean subjects, whereas, the other liver enzymes or products measured in serum were not. In fact these variables correlated to varying degrees with waist-hip ratio, whereas ALP levels did not. This suggest that liver function is predominantly influenced by abdominal obesity whereas serum ALP levels are more influenced by overall body adiposity.
In conclusion, ALP, may be involved in the control of adipogenesis, in the 3T3- L1 preadipocyte cell line and in human preadipocytes isolated from mammary adipose tissue and subcutaneous abdominal adipose tisssue. The presence of ALP activity in lipid droplets in 3T3-L1 cells and human preadipocytes, and the ability of ALP inhibitors to block adipogenesis strongly suggest that ALP plays a role in the control of adipogenesis. / IT2017
|
2 |
Deltamethrin, a Pyrethroid Insecticide, Potentiates Lipid Accumulation in 3T3-L1 AdipocytesHsieh, Tsung-Hsiu 13 July 2016 (has links)
Obesity is a growing concern in the world today. As we ponder about the many causes of this global epidemic, we are driven to look at our food and the environmental toxicants that may contribute to obesity. Deltamethrin, being a common synthetic pyrethroid used in agriculture for pest control, is the primary insecticide this study explores to connect with obesity in 3T3-L1 adipocytes. To investigate the relationship between deltamethrin and adipogenesis, various concentrations were tested, 1nM, 10nM, 100nM, 1μM, and 10μM. The result indicated that higher concentration of deltamethrin had a direct impact on fat accumulation. These experiment results indicate that deltamethrin may potentiate adipogenesis in this model. Further in vivo studies will be needed to validate these findings and confirm the effects of deltamethrin on obesity.
|
3 |
Oxidized soybean oil alters the expression of PPAR gamma and target genes in 3T3-L1 cellsDingels, Nicole Katherine 15 November 2012 (has links)
Background: The typical western diet contains foods with modest amounts of lipid oxidation products. Previous work by us and others have demonstrated that mildly oxidized lipids promote a gain in fat mass while highly oxidized lipids decrease fat mass in rodents and triglyceride (TAG) accumulation in 3T3-L1 cells. Adipocyte differentiation is regulated by a key nuclear transcription factor known as PPARγ.
Objective: To investigate if the alterations in triglyceride accumulation in 3T3-L1 cells pretreated with oxidized soy oil are due to 1) a change in PPARg DNA interactions 2) changes in the expression of SREBP-1c, PPARg, and/or its target genes.
Main Methods: Confluent 3T3-L1 cells were pretreated for 24hours with 0.01% soy oil (SO) which was either unheated (unheated SO) or heated for 3, (3h-SO), 6 (6h-SO), or 9hours (9h-SO). The effect of 24hour soy oil exposure was assessed at several time points throughout the differentiation process. Alterations in PPARg DNA interaction was assessed using a PPARγ transcription factor assay kit while alterations in the expression of genes upstream and downstream of PPARγ was determined by RT-PCR. Primary and secondary products of oxidation within the SO were determined by spectrophotometry.
Results: The 6hr-SO contained the greatest concentration of peroxides whereas both the 6hr-SO and 9hr-SO contained a significantly higher concentration of conjugated dienes and aldehydes.Nuclear extracts from 3T3-L1 cells pretreated with 6h-SO demonstrated the greatest reduction in PPARγ DNA binding. Compared to the unheated SO and mildly oxidized 3h-SO, cells treated with the 6h-SO had a significant reduction in SREBP-1c, PPARg, LPL, and GLUT4 expression occurring early in the differentiation process. Variations in the gene expression of 6hr-SO pretreated cells persisted within partially differentiated and mature adipocytes.
Conclusions: Pre-treatment of preadipocytes with soy oil heated for ³ 6h greatly decreases the activity of PPARγ in the nucleus and adipogenic gene expression . These changes seen in early differentiation seem to correlate the best with the phenotype of reduced triglyceride accumulation seen in mature adipocytes.
|
4 |
Role of DNA Methylation in AdipogenesisChen, Yii-Shyuan 12 August 2014 (has links)
The increase in the prevalence of obesity and obesity-related diseases has caused greater attention to be placed on the molecular mechanisms controlling adipogenesis. In this study, we studied the role of 5-aza-2'-deoxycytidine (5-Aza-dC), an inhibitor of DNA methylation, on adipocyte differentiation. We found that inhibiting DNA methylation by 5-Aza-dC significantly inhibited adipocyte differentiation whereas promoting osteoblastogenesis. Wnt10a was up-regulated by 5-Aza-dC treatment and it was suggested that Wnt10a might play a vital role in suppressing adipogenesis and promoting osteoblastogenesis by inhibiting DNA methylation. In 3T3-L1 cells, Wnt signaling inhibitor IWP-2 was found to reverse the inhibitory effect of 5-Aza-dC on Adipocyte differentiation, whereas in mesenchymal stem cell line, ST2 cells, IWP-2 treatment reversed the effect of 5-Aza-dC on promoting osteoblastogenesis. These studies will provide a better understanding to the cause and treatment of obesity and bone-related diseases.
|
5 |
Metabolic hormones and their receptors in obesity insulin, visfatin, and ASP /MacLaren, Robin. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Medicine, Division of Experimental Medicine. Title from title page of PDF (viewed 2009/06/09). Includes bibliographical references.
|
6 |
Matrigel alters the expression of genes related to adipogenesis and the production of extracellular matrix in 3T3-L1 cellsJosan, Chitmandeep January 2018 (has links)
Studying molecular mechanisms underlying adipocyte differentiation is imperative to understanding adipocyte function and its role in obesity. However, the majority of research exploring adipogenesis is conducted with cell lines cultured directly on tissue culture plastic. Culturing cells on plastic may result in altered proliferation and differentiation, and subsequent change in pharmacological response. The extracellular matrix (ECM) plays a critical role in adipocyte development and survival. It is suggested that cells in vitro express high levels of ECM proteins to compensate for lack of an ECM. Differentiating preadipocytes on a substrate representative of the mature adipocyte extracellular environment may provide a more physiological response to drugs and environmental chemicals. The purpose of this study was to investigate the impact of Matrigel on 3T3-L1 cell growth, differentiation, lipid accumulation and responsiveness to Rosiglitazone. Matrigel decreased 3T3-L1 cell proliferation, enhanced lipid accumulation, and increased expression of adipogenic and lipogenic markers, including PPARγ, C/EBPα, SREBP1c, FAS, LPL, FABP4 and PLIN1. This was accompanied by a decrease in gene expression of ECM proteins, including fibronectin, collagen 1, collagen 3, collagen 4, laminin and collagen 6 in 3T3-L1 cells on Matrigel. Finally, Matrigel enhanced the response of 3T3-L1 cells to Rosiglitazone, which is a known PPARγ agonist and significantly increases lipid accumulation in 3T3-L1 cells. Our results suggest that enhanced lipid accumulation in 3T3-L1 cells on Matrigel is associated with decreased expression of ECM genes. Future studies require investigation of the cell-to-ECM interaction to confirm these findings. This study proposes that the nature of the ECM for cultured adipocytes alters temporal lipid accumulation patterns and response to various drugs as compared to 3T3-L1 cells grown on tissue culture plastic. / Thesis / Master of Science (MSc)
|
7 |
Analysis of Mitochondrial Remodeling in Adipocytes during Adipogenesis and Obesity Development: a DissertationWilson-Fritch, Leanne 15 April 2004 (has links)
The prevalence of type 2 diabetes mellitus is increasing worldwide and is considered one of the top health concerns globally. The occurrence of type 2 diabetes is linked to the rapidly increasing trend of obesity in both adults and children, which is proposed to be a contributing factor in the development of insulin resistance and type 2 diabetes. White adipose tissue, an insulin target tissue, is an important endocrine organ involved in the control of energy homeostasis through its direct influence on metabolism, insulin sensitivity and food intake. To better understand these functions, we studied adipocyte differentiation in 3T3-Ll cells, a white adipose tissue cell line. Many mitochondrial proteins exhibit an increase in expression levels during adipogenesis as identified by mass spectrometry. Moreover, increased mitochondrial mass and altered morphology was observed by light microscopy. Qualitative changes in mitochondrial gene expression were also observed during adipogenesis as revealed by Affymetrix GeneChip analysis. Additionally, striking changes in mitochondrial protein expression and morphology were identified following treatment with the insulin sensitizing agent, rosiglitazone. These results suggest that mitochondrial biogenesis and remodeling is inherent to white adipocyte differentiation. To investigate the physiological relevance of these findings, mRNA and protein expression profiles and mitochondrial morphology were studied during the development of insulin resistance and obesity and following treatment with rosiglitazone in ob/ob mice. These studies reveal a marked decrease in transcript levels for over 50% of mitochondrial genes with the onset of obesity in ob/ob mice. Rosiglitazone treatment stimulates enhanced expression in approximately half of these genes, as well as changes in mitochondrial mass and remodeling. Furthermore, these studies reveal that depressed oxygen consumption and fatty acid oxidation occur with obesity development and these alterations can be reversed with rosiglitazone treatment. This work identifies the previously underscored plasticity of mitochondria in white fat and suggests that mitochondrial biogenesis and remodeling in white adipose tissue may lead to systemic changes in insulin sensitivity and energy homeostasis. Lastly, these studies suggest that mitochondria may be an important therapeutic target for antidiabetic drugs.
|
8 |
Bases moleculares das ações rápidas do T3 na captação de glicose em célula adiposa 3T3-L1. / Molecular basis of rapid T3 actions on glucose uptake in 3T3-L1 adipocytes.Croffi, Rafael Vianna 24 March 2015 (has links)
Os hormônios tireoidianos atuam sobre o metabolismo dos diversos tecidos do organismo e participam da regulação do consumo de glicose pelas células. Estudos já evidenciaram que o T3 atua, dependendo do tipo celular, aumentando a expressão de algumas isoformas dos transportadores de glicose (GLUTs) e a translocação do GLUT4 para a membrana plasmática, melhorando, também, a captação de glicose (CGlic) em poucos minutos. Os mecanismos envolvidos nessas ações do T3, contudo, ainda não estão bem esclarecidos. O objetivo do presente estudo foi investigar as possíveis vias de sinalização envolvidas na ação aguda do T3 sobre a CGlic em células adiposas 3T3-L1. Nossos dados demonstraram que o T3 promove aumento na CGlic, com pico aos 10 min, retornando ao nível do controle após 30 min de incubação das células com o hormônio. Sugerimos que essa ação depende, ao menos, de duas vias de sinalização. Uma delas envolve a ativação das proteínas Src, PI3K e Akt. A outra, aparentemente, é iniciada a partir da membrana plasmática via integrina aVb3 / Thyroid hormones act on the metabolism of many tissues and participate in the regulation of glucose consumption by cells. Studies from this and other laboratories have demonstrated in muscle and adipose cells that T3 increases, in a short period (minutes), the expression of some glucose transporter (GLUTs) isoforms and GLUT4 translocation to the plasma membrane leading to an improvement of glucose uptake. However, the mechanisms involved in these T3 actions are still not clear. The aim of this study was to investigate the possible signaling pathways involved in the acute T3 action on glucose uptake in 3T3-L1 adipocytes. Our results have shown that T3 increases glucose uptake with a peak at 10 min returning to the control level after 30 min of the cell incubation with the hormone. We suggest that this action depends on at least two parallel signaling pathways. One involves the activation of Src, PI3K and Akt proteins, while the other involves another mechanism triggered by T3, apparently, from the plasma membrane at aVb3 integrin.
|
9 |
Adipositas: <i>In vivo</i> Expressionsstudien über den Adipositas Faktor <i>DOR</i> und Studien zur Translationskontrolle in der frühen Adipogenese / Obesity: <i>In vivo</i> expression studies about the obesity factor <i>DOR</i> and studies of translational control in early adipogenesisFromm-Dornieden, Carolin 20 April 2012 (has links)
No description available.
|
Page generated in 0.0436 seconds