1 |
Signalstrahlverstärkung und Phasenkonjugation durch photorefraktive parametrische Wellenmischung in Bariumtitanat- und Kalium-Tantalat-Niobat-Kristallen / Signal beam amplification and phase conjugation by photorefractive parametric wave mixing in barium titanate and potassium-tantalate-niobate crystalsNeumann, Jens 26 September 2000 (has links)
Der photorefraktive Effekt in Bariumtitanat-Kristallen ist Gegenstand zahlreicher Forschungsarbeiten. Der Grund sind
die großen elektrooptischen Koeffizienten dieses Materials, die nur von wenigen, kommerziell noch nicht erhältlichen
Kristallen übertroffen werden, z.B. von tetragonalem Kalium-Tantalat-Niobat.
Beleuchtet man diese Materialien mit Laserstrahlen, treten einzigartige Effekte auf. So erzeugen z.B. photorefraktive
parametrische Verstärkungsprozesse charakteristische kreis- oder linienförmige Streulichtfiguren. Faszinierende
Möglichkeiten bieten diese parametrischen Prozesse bei der Verstärkung und Phasenkonjugation von Lichtwellen.
In dieser Arbeit werden alle 57 photorefraktiven parametrischen Prozesse, die in den untersuchten Materialien auftreten
können, zunächst phänomenologisch analysiert. Das Lösen der gekoppelten Wellengleichungen filtert aus der Vielzahl
der Prozesse diejenigen heraus, die eine besonders effiziente Wechselwirkung einfallender Lichtwellen versprechen.
Für diese Prozesse werden anschließend explizit Verstärkungsfaktoren berechnet. Durch die Berücksichtigung
elastooptischer, piezoelektrischer und raumladungsbegrenzender Effekte können die Einfallswinkel der Lichtstrahlen
und die Orientierungen der Kristalle für die Signalstrahlverstärkung und die Phasenkonjugation optimiert werden.
Auf der Basis dieser theoretischen Vorarbeiten gelingt im experimentellen Teil dieser Arbeit zum ersten Mal die
Verstärkung eines Laserstrahls durch einen photorefraktiven parametrischen Prozeß. Die Verstärkung beträgt in einem
3,2 Millimeter dicken Bariumtitanat-Kristall 9000. Eine Besonderheit der angewandten Verstärkungsprozesse ist die
sehr geringe räumliche Bandbreite. Die daraus folgende große Winkelselektivität verspricht viele
Anwendungsmöglichkeiten in der optischen Meßtechnik, schränkt den Einsatz zur Bildverstärkung jedoch erheblich ein.
Ebenfalls zum ersten Mal wird die Phasenkonjugation durch einen phototrefraktiven parametrischen Prozeß
demonstriert. Die Intensitäten der erzeugten phasenkonjugierten Wellen entsprechen denen der verstärkten
Signalstrahlen. Es lassen sich also Reflektivitäten bis zu 9000 realisieren. Zudem kann durch eine spezielle
Konfiguration mit frequenzverstimmten Signalstrahlen ein prinzipielles Problem der photorefraktiven Wellenmischung
gelöst werden: Die Verstärkung sehr schwacher Signalstrahlen. Durch die neu entwickelte Methode der
Rauschunterdrückung gelingt es, Lichtwellen mit Leistungen unter einem Nanowatt um mehrere Größenordnungen zu
verstärken.
Zum Abschluß werden die parametrischen Prozesse noch in Kalium-Tantalat-Niobat untersucht. Bei diesen ersten
Untersuchungen gelingt der Nachweis von fünf Prozessen. Die beobachteten ausgeprägten Effekte und die gemessenen
riesigen elektrooptischen Koeffizienten zeigen, daß tetragonale Kalium-Tantalat-Niobat-Kristalle ebenfalls sehr
interessant für die photorefraktive Wellenmischung sind.
|
2 |
Wellenlängenmultiplexing mit thermisch fixierten Volumenphasenhologrammen in photorefraktiven Lithiumniobat-Kristallen / Wavelength Division Multiplexing with Thermally Fixed Volume Phase Holograms in Photorefractive Lithium Niobate CrystalsBreer, Stefan 08 September 2000 (has links)
Wavelength division multiplexing (WDM) is essential for further enhancement of the transmission capacities of optical
telecommunication systems. Key devices in WDM networks are multiplexing/demultiplexing components, which enable
the combination/separation of several carrier waves with different wavelengths for the purpose of simultaneous
transmission through one optical fibre. These components can be realized using Bragg diffraction from volume
holographic gratings. Especially reflection holograms provide a pronounced wavelength selectivity which makes them
attractive for free-space WDM applications.
Holograms can be stored permanently in photorefractive lithium niobate crystals by the method of Thermal Fixing.
Heating of the crystal during or after the recording process and subsequent development by homogeneous illumination at
room temperature create nonvolatile holograms. The recording and development processes of Thermal Fixing in iron-
and copper-doped lithium niobate crystals were investigated. Macroscopic Gaussian-shaped intensity patterns were
used to analyse the origin of the fixing mechanism. Spatially resolved absorption measurements were performed to
determine the concentration profiles of electron traps (Fe II/III) and protons. Results of computer simulations were
compared with experimental results, which showed that protons can be found to work as compensators during hologram
recording at temperatures around 180 degree C. Nevertheless thermal fixing without protons was possible, another
compensation mechanism stood in. The obtained refractive-index changes were due to the electro-optic effect, other
contributions could be neglected.
With this detailed knowledge about thermal fixing, a two-channel demultiplexing unit was built by superposition of two
thermally fixed reflection holograms in an iron-doped lithium niobate crystal. For this purpose a special two-beam
interference setup with precisely adjustable writing angles was arranged in a vacuum chamber to eliminate thermally
induced phase disturbances of the holographic recording procedure. Continuous development of the holograms by
incoherent light was necessary. In the dark, the enhanced dark conductivity of the crystal used gave rise to a hologram
degradation within about one day. Large diffraction efficiencies were attained (intensity losses between 2.3 and 5.2 dB
only) uilizing crystals with high-quality polished surfaces. The crosstalk supression of the realized demultiplexer was >
25 dB, which is comparable with the performance of other multiplexing techniques like fibre Bragg gratings or
arrayed-waveguide gratings. The low polarization dependence of the demultiplexer can be improved by superposition of
two holograms for each channel.
|
Page generated in 0.0136 seconds