• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Μέθοδοι υπολογισμού των αθροισμάτων Newton και των αθροισμάτων Stieltjes / Methods for computing the Newton and Stieltjes sums

Γκούστα, Ζωή 20 October 2009 (has links)
Σκοπός της παρούσης εργασίας είναι η παρουσίαση διαφόρων μεθόδων υπολογισμού των ροπών κατανομής των ριζών των ορθογωνίων πολυωνύμων, ισοδύναμα των αθροισμάτων Newton των ριζών, δηλαδή με, ενός πολυωνύμου βαθμού και των αθροισμάτων Stieltjes που είναι αθροίσματα της μορφής, όπου και είναι οι ρίζες μιας λύσης μιας ομογενούς διαφορικής εξίσωσης δεύτερης τάξης. Κάποια από αυτά τα αθροίσματα βρίσκουν εφαρμογή στο να φράσουμε τις ρίζες κάποιων ειδικών συναρτήσεων, ενώ άλλα χρησιμοποιούνται για την μελέτη της ασυμπτωτικής κατανομής των ριζών των ορθογωνίων πολυωνύμων και για τη μελέτη της μονοτονίας των ριζών. Παρουσιάζουμε δύο μεθόδους υπολογισμού των ροπών της κατανομής των ριζών των ορθογωνίων πολυώνυμων. Στην πρώτη μέθοδο υπολογίζουμε τα αθροίσματα Netwon των ριζών χρησιμοποιώντας τις ιδιοτιμές ενός τριδιαγώνιου πίνακα, ενώ στη δεύτερη μέθοδο ο υπολογισμός των αθροισμάτων Netwon γίνεται μέσω των συντελεστών των διαφορικών εξισώσεων που ικανοποιούν τα πολυώνυμα. Θα πρέπει εδώ να τονίσουμε ότι η δεύτερη μέθοδος μας επιτρέπει να υπολογίσουμε αριθμητικά τα αθροίσματα Netwon. / We present some methods for computing the distirbution of the roots of orthogonal polynomials, equivantly of Newton sums, and we sketch their use in determining some properties of second order ordinary differential equations.
2

Algorithmes pour la factorisation d'entiers et le calcul de logarithme discret / Algorithms for integer factorization and discrete logarithms computation

Bouvier, Cyril 22 June 2015 (has links)
Dans cette thèse, nous étudions les problèmes de la factorisation d'entier et de calcul de logarithme discret dans les corps finis. Dans un premier temps, nous nous intéressons à l'algorithme de factorisation d'entier ECM et présentons une méthode pour analyser les courbes elliptiques utilisées dans cet algorithme en étudiant les propriétés galoisiennes des polynômes de division. Ensuite, nous présentons en détail l'algorithme de factorisation d'entier NFS, et nous nous intéressons en particulier à l'étape de sélection polynomiale pour laquelle des améliorations d'algorithmes existants sont proposées. Puis, nous présentons les algorithmes NFS-DL et FFS pour le calcul de logarithme discret dans les corps finis. Nous donnons aussi des détails sur deux calculs de logarithme discret effectués durant cette thèse, l'un avec NFS-DL et l'autre avec FFS. Enfin, nous étudions une étape commune à l'algorithme NFS pour la factorisation et aux algorithmes NFS-DL et FFS pour le calcul de logarithme discret: l'étape de filtrage. Nous l'étudions en détail et nous présentons une amélioration dont nous validons l'impact en utilisant des données provenant de plusieurs calculs de factorisation et de logarithme discret / In this thesis, we study the problems of integer factorization and discrete logarithm computation in finite fields. First, we study the ECM algorithm for integer factorization and present a method to analyze the elliptic curves used in this algorithm by studying the Galois properties of division polynomials. Then, we present in detail the NFS algorithm for integer factorization and we study in particular the polynomial selection step for which we propose improvements of existing algorithms. Next, we present two algorithms for computing discrete logarithms in finite fields: NFS-DL and FFS. We also give some details of two computations of discrete logarithms carried out during this thesis, one with NFS-DL and the other with FFS. Finally, we study a common step of the NFS algorithm for integer factorization and the NFS-DL and FFS algorithms for discrete logarithm computations: the filtering step. We study this step thoroughly and present an improvement for which we study the impact using data from several computations of discrete logarithms and factorizations

Page generated in 0.0206 seconds