• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 1
  • 1
  • Tagged with
  • 49
  • 13
  • 11
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Structure and dynamics of evolving complex networks

Colman, Ewan January 2014 (has links)
The analysis of large disordered complex networks has recently received enormous attention motivated by both academic and commercial interest. The most important results in this discipline have come from the analysis of stochastic models which mimic the growth and evolution of real networks as they change over time. The purpose of this thesis is to introduce various novel processes which dictate the development of a network on a small scale, and use techniques learned from statistical physics to derive the dynamical and structural properties of the network on the macroscopic scale. We introduce each model as a set of mechanisms determining how a network changes over a small period in time, from these rules we derive several topological properties of the network after many iterations, most notably the degree distribution. 1. In the rst mechanism, nodes are introduced and linked to older nodes in the network in such a way as to create triangles and maintain a high level of clustering. The mechanism resembles the growth of a citation network and we demonstrate analytically that the mechanism introduced su ces to explain the power-law form commonly found in citation distributions. 2. The second mechanism involves edge rewiring processes - detaching one end of an edge and reattaching it, either to a random node anywhere in the network or to one selected locally. 3. We analyse a variety of processes based around a novel fragmentation mechanism. 4. The nal model concerns the problem of nding the electrical resistance across a network. The network grows as a random tree, as it grows the distribution of resistance converges towards a steady state solution. We nd an application of the relatively recent concept of a random Fibonacci sequence in deriving the rate of convergence of the mean.
Read more
32

Flocking in active matter systems : structure and response to perturbations

Kyriakopoulos, Nikos January 2016 (has links)
Flocking, the collective motion of systems consisting of many agents, is a ubiquitous phenomenon in nature, observed both in biological and artificial systems. The understanding of such systems is important from both a theoretical point of view, as it extends the field of statistical physics to non-equilibrium systems, and from a practical point of view, due to the emergence of applications that are based on the modelling. In the present thesis I numerically investigated several aspects of flocking dynamics, simulating systems consisting of up to millions of particles. One first problem I worked on regarded the flocks response to external perturbations, something that had received little attention so far. The result was a scaling relation, connecting the asymptotic response of a flock to the strength of the external fleld affecting it. Additionally, my preliminary results point towards a generalised fluctuation-dissipation relation for the short-time response, with two different effective temperatures depending on the direction at which the perturbing field is applied. Another aspect I studied was the stability and dynamical properties of non-confined active systems (finite flocks in open space). The results showed that these flocks are stable only when an attracting 'social force' keeps the agents from drifting away from each other. The velocity fluctuations correlations were found to be different than the asymptotic limit predictions of hydrodynamic theories for infinite flocks. Finally, I studied the clustering dynamics of flocking systems. The conclusion was that the non-equilibrium clustering in the ordered phase is regulated by an anisotropic percolation transition, while it does not drive the order-disorder transition, contrary to earlier conjectures. I believe the results of this work answer some important questions in the field of ordered active matter, while at the same time opening new and intriguing ones, that will hopefully be tackled in the near future.
Read more
33

Generalized quantization and colour algebras / by R. Kleeman

Kleeman, R (Richard) January 1985 (has links)
Bibliography: leaves 143-146 / vii, 147 leaves ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Mathematical Physics, 1986
34

Non-equilibrium dynamics of interacting many-body quantum systems in one dimension

Bertini, Bruno January 2015 (has links)
In this thesis we study three examples of interacting many-body systems undergoing a non equilibrium time evolution. Firstly we consider the time evolution in an integrable system: the sine-Gordon field theory in the repulsive regime. We will focus on the one point function of the semi-local vertex operator e<sup>i&beta;&phi;(x)/2</sup> on a specific class of initial states. By analytical means we show that the expectation value considered decays exponentially to zero at late times and we determine the decay time. The method employed is based on a form-factor expansion and uses the "Representative Eigenstate Approach" of Ref. [73] (a.k.a. "Quench Action"). In a second example we study the time evolution in models close to "special" integrable points characterised by hidden symmetries generating infinitely many local conservation laws that do not commute with one another, in addition to the infinite commuting family implied by integrability. We observe that both in the case where the perturbation breaks the integrability and when it breaks only the additional symmetries maintaining integrability, the local observables show a crossover behaviour from an initial to a final quasi stationary plateau. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-1/2 chain with additional perturbations that break integrability. Finally, we study the effects of integrability breaking perturbations on the non-equilibrium evolution of more general many-particle quantum systems, where the unperturbed integrable model is generic. We focus on a class of spinless fermion models with weak interactions. We employ equation of motion techniques that can be viewed as generalisations of quantum Boltzmann equations. We benchmark our method against time dependent density matrix renormalisation group computations and find it to be very accurate as long as interactions are weak. For small integrability breaking, we observe robust prethermalisation plateaux for local observables on all accessible time scales. Increasing the strength of the integrability breaking term induces a "drift" away from the prethermalisation plateaux towards thermal behaviour. We identify a time scale characterising this crossover.
Read more
35

Dynamics with selection / Dynamique avec sélection

Brotto, Tommaso 11 February 2016 (has links)
Le sujet de cette thèse est la dynamique des populations. Nous en étudions les caractéristiques en absence ou en présence d'une structure spatiale, et cela se reproduit dans la subdivision du manuscrit en deux parties. Dans la première, où nous considérons la compétition comme se manifestant entre tous les individus en même temps, nous prouvons qu'une condition de bilan détaillé est vérifiée dans des différents régimes d'évolution (et non seulement dans le cas de successional-mutations). On montre que la dynamique adaptative d'une population présente nombreux aspects en commun avec la dynamique vitreuse hors-équilibre, le rôle de la température étant joué par la dimension de la population. Des nombreuses applications d'une telle analogie sont suggérées. Dans la suite, nous considérons l'évolution de populations monomorphes interagissants. Nous montrons comment le couplage génère une séparation des échelles temporales d'adaptation, et il est possible qu'une hiérarchie soit crée selon les degrés d'adaptation des populations. Dans le cas de populations en compétition dans l'espace, la dynamique évolutive est fortement modifiée par la localité des interactions. Les mécanismes de sélection sont moins efficaces pour ce qui est de favoriser la fixation du phénotype mieux adapté. Nous montrons de façon quantitative comment un taux de mutation plus élevé occasionne un désavantage évolutif, car la présence de mutants ralentit la croissance spatiale d'une population. On montre que, si le taux de mutation est variable, la sélection favorise non seulement un taux de reproduction élevé, mais aussi un taux de mutation réduit. / The subject of this thesis is population dynamics. We study its characteristics in the absence or in presence of a spatial structure, and this is reproduced in the subdivision of the manuscript into two parts. In the first, where we consider the competition as concerning all the individuals at the same time, we prove that a detailed balance condition holds in different regimes of evolution (and not only in the case of successional-mutations) . We show that the adaptive dynamics of a population has several aspects in common with out of equilibrium glassy dynamics, the role of the temperature being played by the size of the population. Several applications of such an analogy are suggested. Later, we consider the evolution of monomorphic interacting populations. We show how the presence of a coupling engenders a separation of the adaptative time-scales, and it is possible that a hierarchy is created, according to the degrees of adaptation of populations.In the case of competing populations in space, the evolutionary dynamics is strongly modified by locality interactions. Selection mechanisms are less effective in promoting the fixation of the fittest phenotype. We show quantitatively how a higher mutation rate constitutes an evolutionary disadvantage, because the presence of mutants slows down the spatial growth of a population. It is shown that if the mutation rate is variable, selection promotes not only a high rate of reproduction, but also a reduced mutation rate.
Read more
36

Étude fondamentale du transport nanofluidique : comment réinventer la passoire ? / Fundamental study of nanofluidic transport : or How to reinvent the colander

Marbach, Sophie 15 June 2018 (has links)
La filtration de molécules est un enjeu vital dans les domaines biomédicaux tels que la dialyse jusqu’à la production à grande échelle d’eau potable. Dans les dernières décennies, des matériaux nanoporeux ont permis des avancées significatives, mais s’appuient toujours sur une géométrie de type "passoire" où une membrane avec de petits trous permet la sélection des molécules cibles. Ceci entraîne notamment une diminution du transport à travers ces trous, et rend les procédés de séparation coûteux en énergie. Ici je développe plusieurs approches innovantes pour la filtration, inspirées par des filtres biologiques (les reins humains, les aquaporines). Je définis de nouveaux concepts pour la séparation, en m’appuyant sur des modèles simples. J’explore notamment des arrangements topologiques différents, mais aussi l’idée d’une passoire active, où la taille des trous peut par exemple varier dans le temps. Tous ces principes pourraient être implémentés à partir d’éléments existants et fournir des alternatives pour la dialyse ou le recyclage des eaux usées. Ces recherches amènent aussi des questions fondamentales originales en physique. En particulier, des grandeurs définies traditionnellement à l’équilibre comme la pression osmotique ou la perméabilité d’un pore ne sont pas bien définies quand le pore a des propriétés qui dépendent du temps. Pour autant, on imagine aisément qu’il est possible d’étendre ces concepts hors d’équilibre, et que cela aura de nombreuses conséquences pour la filtration, et même le pompage ionique. / Filtering specific molecules is a challenge faced for several vital needs: from biomedical applications like dialysis to the intensive production of clean water. The domain has been boosted over the last decades by the possibilities offered by nanoscale materials. Filtration is however always designed according to a sieving perspective: a membrane with small and properly decorated pores allows for the selection of the targeted molecules. This inevitably impedes the flux and transport, making separation processes costly in terms of energy. Here I investigate several innovative approaches to separation and filtration. I draw inspiration from biological systems (the human kidney, biological channels like aquaporins) and rationalize some new concepts for sieving, based on simple models. These approaches rely on different alternative strategies: either exploring new topologies or the idea of active sieving, with dynamically responsive channels and pores. All these principles could be readily mimicked using existing technologies to build artificial dialysis devices or alternatives for advanced water recycling. In a broader perspective, these approaches open fundamental questions in the fields of statistical physics and fluid dynamics. In particular, traditional in equilibrium quantities like osmotic pressure and permeability are not defined when the pore has an active component, yet one easily imagines that such concepts could be extended to these out-of equilibrium situations. This has numerous consequences on filtration and desalination, but also on ionic pumping and sorting.
Read more
37

Élasticité et tremblements du tricot / Elasticity and tremors of knitted farbics

Poincloux, Samuel 15 October 2018 (has links)
Les propriétés mécaniques d’un tricot diffèrent drastiquement de celles du fil dont il est constitué. Par exemple, une étoffe tricotée d’un fil inextensible présente une étonnante propension à la déformabilité. À l’instar des systèmes mécaniques où la géométrie joue un rôle prépondérant, tels les origamis, la réponse mécanique d’un tricot va être déterminée par le chemin imposé au fil. Lors du tricotage, le fil est contraint de se courber et de former des points de croisement suivant un motif répétitif, figeant de cette manière sa topologie. Les trois ingrédients sur lesquels repose la réponse mécanique d’un tricot sont l’élasticité du fil, sa topologie et le frottement aux contacts. Une sélection des nombreux phénomènes qui émergent du couplage entre ces ingrédients fait l’objet de cette thèse. Premièrement, l’intérêt a été porté sur l’élasticité du tricot. En se basant sur une expérience de traction d’un tricot-modèle, une théorie, qui vise à décrire cette réponse mécanique, a été construite en tenant compte de la conservation de la topologie, l’énergie de flexion et l’inextensibilité du fil. Dans un second temps, l’accent est mis sur les fluctuations de la réponse mécanique. Ces fluctuations ont pour origine la friction du fil qui empêche sa répartition dans la maille jusqu’à ce qu’un contact glisse brusquement, déclenchant alors une succession de glissements. La mesure de la réponse en force et du champ de déformations montrent que ces évènements suivent une dynamique d’avalanches. Enfin, l’action de la topologie et de la métrique du tricot sur sa forme tridimensionnelle, ainsi que la transition de configuration spontanée de la structure d’un tricot, ont été examinés. / Knits mechanical properties are fundamentally different from those of its constitutive yarn. For instance, a fabric knitted with an inextensible yarn demonstrates a surprising inclination for deformability. Like mechanical systems where geometry plays a preponderant role, such as origami, the mechanical response of knitted fabrics is governed by the pattern imposed on the yarn. In the process of knitting, the yarn is constrained to bend and to cross itself following a periodic pattern, anchoring its topology. The three factors which determine the mechanical response of a knit are the elasticity of the yarn, its topology, and friction between crossing strands. This thesis explores several phenomena that arise from the interplay of these factors. First, we focused on the elasticity of a knit. Working from experimental data, we developed a theory to decipher the mechanical response of model knits under traction, taking into account the unaltered topology, bending energy, and inextensibility of the yarn. Next, we explored fluctuations in the mechanical response of a knit. Those fluctuations originate from yarn-yarn friction, preventing free yarn redistribution in the stitch until a contact slides and triggers propagative slips. Measures of the force response and deformation fields reveal that those events follow an avalanching dynamic, including a power law distribution of their size. Finally, the impact of topology and metric on knit three-dimensional shapes, along with spontaneous configuration transitions in a knit structure, are studied.
Read more
38

Modélisation de l’évacuation des personnes en situation d’incendie / Human egress modelling in fire situations

Gasparotto, Thomas 13 February 2018 (has links)
Ce travail, mené conjointement entre CNPP et le Laboratoire d’Énergétique et de Mécanique Théorique et Appliquée, est consacré à la mise en place d’un modèle d’évacuation de personnes, dans l’optique d’une application en Ingénierie de Sécurité Incendie. Le modèle de cheminement de personnes développé dans ce manuscrit est un modèle physique reposant sur une équation de conservation de la densité de personnes. Il est basé sur des hypothèses simples et réalistes résultant de l’observation de mouvements de foule, et utilise une vision macroscopique des personnes caractérisées par une densité moyenne. Ce modèle est mis en œuvre sur des cas de vérification et de comparaison issus de la littérature. Des expériences d’évacuation sont réalisées à échelle réelle afin de récolter des données quantitatives sur le mouvement des personnes et de valider de façon pertinente le modèle de cheminement de personnes. En outre, une stratégie est proposée afin d’intégrer dans la modélisation les contraintes thermiques et optiques liées au feu ainsi que leur impact sur le processus d’évacuation. Enfin, des simulations d’évacuation intégrant les effets du feu sont effectuées sur une configuration à grande échelle / This work was conducted as a collaboration between CNPP and the laboratory LEMTA. It was devoted to the implementation of an emergency egress model offering prospects for use in Fire Safety Engineering. The pedestrian movement model described in this manuscript is a physical model relying on a people density balance equation. This model is based on three fundamental assumptions resulting from pedestrian phenomena commonly observed, especially in crowds. Its mathematical formulation assumes that people are regarded as a mean density in a macroscopic way. The pedestrian model was tested on verification and comparison cases extracted from literature. Evacuation drills were also performed at real scale without fire constraints to collect some quantitative data like egress times or flows, and to validate the people motion model. Furthermore, a mathematical strategy is propounded in order to integrate thermal and optical stresses into the evacuation model and to take into consideration their incidence on evacuation processes. Finally, egress simulations are achieved on a large-scale configuration considering different scenarios involving fires
Read more
39

Structure microscopique et propriétés interfaciales de fluides confinés dans des matériaux poreux de diverses géométries / Microscopic structure and interfacial properties of confined fluids into porous material of various geometries

Bernet, Thomas 28 September 2018 (has links)
L’étude du phénomène d’adsorption peut être réalisée théoriquement dans le cadre de la physique statistique, à l’échelle microscopique, en mettant en jeu une interface entre un fluide et un solide. L’objectif de cette thèse est de proposer une modélisation moléculaire de fluides tels que le méthane, confinés dans des matériaux poreux de géométrie quelconque. Le cadre théorique est ainsi directement développé à l’échelle microscopique et ses résultats sont confrontés à ceux obtenus avec des simulations moléculaires. À l’échelle macroscopique, le formalisme théorique nous permet de retrouver des résultats expérimentaux tels que des isothermes et des chaleurs d’adsorption.Tout d’abord, nous présentons les principaux résultats de la théorie de la fonctionnelle de la densité classique (cDFT), qui permet de formuler les lois de la physique statistique à partir de la densité du fluide en chaque point de l’espace. Cette théorie permet de décrire des fluides inhomogènes, c’est-à-dire des fluides pour lesquels la densité n’est pas constante en tout point de l’espace. Nous devons également considérer une équation d’état moléculaire de référence. Nous choisissons pour cela la théorie statistique des fluides associatifs (SAFT), formulée à partir de l’énergie libre du système. Le potentiel d’interaction d’une molécule telle que le méthane est alors modélisé comme celui d’une sphère dure entourée d’une couronne attractive. Nous décrivons la sphère dure à l’aide de la théorie de la mesure fondamentale (FMT), qui utilise des densités pondérées, c’est-à-dire des fonctions exprimées en un point de l’espace, mais qui dépendent du voisinage immédiat de ce point. Les fonctions pondérées sont nécessaires pour modéliser les fluides inhomogènes confinés à l’échelle microscopique. L’étude menée à partir de la FMT nous a conduit à définir de nouvelles fonctions pondérées, permettant de décrire des fluides de sphères attractives.Dans ce nouveau cadre théorique, il est nécessaire d’utiliser des approximations dans l’écriture de la fonctionnelle d’énergie libre. Nous proposons quatre approches, avec lesquelles nous pouvons prédire la distribution de la densité du fluide dans l’espace. Ces profils étant décrits à l’échelle microscopique, nous avons réalisé des simulations moléculaires de type Monte Carlo pour en évaluer la qualité par comparaison, pour des systèmes définis à potentiel équivalent. Nous retenons alors une des nouvelles formulations décrivant le fluide inhomogène. Puis, nous nous intéressons à la modélisation du solide. De nombreuses approches utilisent des expressions analytiques des densités pondérées, ce qui ne permet d’étudier que des milieux poreux à géométrie simple et idéale. Dans le cadre de cette thèse, nous écartons ce type d’approche et nous proposons de calculer les densités pondérées à l’aide de transformées de Fourier rapides dans un espace à trois dimensions, pour une forme quelconque de pore. La conséquence numérique de cette approche est que l’on considère un espace de calcul discret. Cela demande alors d’utiliser des résultats mathématiques issus de la géométrie discrète, afin de décrire correctement les interactions entre le fluide et une surface solide discrète quelconque.Cette nouvelle combinaison entre la théorie de la fonctionnelle de la densité et la géométrie discrète permet notamment d’étudier l’adsorption de méthane dans des pores cylindriques de silice. Nous réalisons en même temps des mesures expérimentales avec ce système, en nous servant de nouveaux substrats de silice préalablement caractérisés. Nous comparons alors les isothermes et les chaleurs d’adsorption obtenues expérimentalement aux prédictions théoriques, ce qui valide l’ensemble du formalisme de l’échelle microscopique à l’échelle macroscopique, en nous servant de tous les nouveaux développements que nous présentons dans cette thèse, liés à la modélisation du fluide et à la modélisation du solide. / The study of adsorption, for systems presenting an interface between a fluid and a solid, can be undertaken theoretically with the statistical physics formalism, at the microscopic scale. The objective of this PhD thesis is to propose a molecular modelling of fluids like methane, confined into porous materials of various geometry. This way, the theoretical framework is directly developed at the microscopic scale and its results are compared with molecular simulations. At the macroscopic scale, the theoretical formalism leads us to obtain the same results than experimental measurements of isotherm and heat of adsorption.First of all, the main results of the classical density functional theory (cDFT) - which gives laws of statistical physics with the fluid density in every point of the space - are presented. Inhomogeneous fluids are thus described with this theory. A molecular equation-of-state has also to be considered as a reference. The statistical associating fluid theory (SAFT), formulated with the free energy of the system has been chosen. Then, the interaction potential of a molecule such as methane is described by a hard-sphere surrounded with an attractive range. The hard-sphere is described with the fundamental-measure theory (FMT), using weighted densities, corresponding to functions defined in a point of the space, but depending on the immediate neighbourhood of this point. Weighted functions are necessary for inhomogeneous fluids modelling confined at the microscopic scale. The study undertaken from the FMT led us to define new weighted functions, allowing us to describe fluids of attractive spheres.With this new theoretical framework, it is necessary to use approximations of the free energy functional. Four different approaches are proposed allowing to predict the spatial distribution of the fluid density. Because these profiles are described at the microscopic scale, Monte Carlo molecular simulations have been performed in order to evaluate their quality by comparison, for systems defined with an equivalent potential. Thereby, one of the new formulations describing the inhomogeneous fluid has been selected for its superiority among the others. Then, special attention has been given to the modelling of the solid. Indeed, most of the existing approaches use analytical expressions of weighted densities to that extent, which limits studies to porous media with simple and ideal geometries. In our work, we exclude this kind of approaches and we propose to compute weighted densities with fast Fourier transforms in a three-dimensional space, for any pore geometry. The consequence of this approach is that a numerical discrete space is considered. This implies the use of mathematical results from discrete geometry, in order to correctly compute interactions between the fluid and any discrete solid surface.This new combination of the density functional theory and discrete geometry has allowed us to study methane adsorption into cylindrical pores of silica. To do so, experimental measurements have been performed on new silica substrates specially synthetized and characterised for this thesis. Theoretical predictions were compared with experimental isotherms and heat of adsorption. It allowed to validate the whole formalism presented in this thesis and developed both for the fluid and the solid modelling from the microscopic to the macroscopic scale.
Read more
40

Self-assembly of enveloped virus : theoretical dynamics and methods for fluorescence measurements analysis / Autoassemblage des virus enveloppés : dynamique théorique et méthodes d'analyse des mesures par fluorescence

Verdier, Timothée 13 November 2015 (has links)
Cette thèse porte sur la description de l'assemblage des virus dans le cadre de la physique statistique ainsi que sur les méthodes de mesure de cet assemblage utilisant les marqueurs fluorescents. Nous nous y attachons à décrire la dynamique de l'agrégation des protéines aux échelles de la population et du virus unique. Nous proposons deux méthodes pour mesurer les grandeurs physiques associées : taille et forme de la structure finale d'une part, taux d'agrégation au cours de la croissance d'autre part. Dans ce travail, nous nous sommes intéressés à la description physique de l'auto-assemblage des protéines virales. La physique de l'auto-assemblage in-vitro des virus sphériques, dont la structure est déterminée par l'agencement régulier de leurs constituants protéiques, a été théoriquement et expérimentalement caractérisée auparavant par des modèles d'agrégation. Les modèles existants décrivaient l'assemblage à quantité de composants viraux fixée dans un système ferme à partir des constituants élémentaires du virus. In-vivo, la situation est bien entendu différente. Abstraction faite de la grande complexité du milieu cellulaire, les virus s'échappent de la cellule une fois formés pour aller infecter de nouvelles cellules. De plus, la quantité de constituants est sans cesse modifiée par la fabrication ou la dégradation des protéines virales. Enfin les méthodes de mesures utilisées in-vitro ne sont généralement plus envisageables in-vivo. Nous avons donc étudié les effets d'un flux de matière dans système ouvert via le calcul de l'état stationnaire, et via la résolution numérique des équations d'évolution des populations d'agrégats qui décrivent la cinétique d'agrégation des protéines virales. Dans ce cadre, nous avons mis en valeur le lien entre la description de l'état général du système en termes de populations et le devenir individuel d'un virus en formation pour le suivi duquel des méthodes expérimentales existent. Nous nous sommes alors attachés à proposer un traitement approprié de telles données expérimentales pour déterminer les valeurs des paramètres physiques du modèle / In this thesis work, we study the self-assembly of viral particles and focus on the analysis of measurements based on fluorescence labeling of viral proteins. We propose a theoretical model of the dynamic of viral proteins self-assembly at the cell membrane based on previous models developed to describe the in-vitro assembly of spherical viruses. We study the evolution of the populations in the successive stages of viral budding as well as the evolution of single particle within this framework. We also provide various data analysis to measure the physical values involved in the process: rate of aggregation during the bud growth, size and shape of the eventual structure. Viruses are biological objects unable to replicate without infecting an host cell since they lack part of the molecular machinery mandatory for genetic code replication and proteins production. Originally aimed at controlling the diseases they cause, the study of viruses is now rich of applications in medical and technological field (gene therapy, phage therapy, targeted therapy, bio-templating, cargo specific encapsulation, etc.). The existent models describing the self-assembly of viral proteins have successfully captured many features observed in the in-vitro experiments. We study the expected evolution when an open system is considered with an input flux of proteins and an output flux of released virion, characteristic of the in-vivo situation. We derive the population distribution at steady state and numerically study their dynamic under constant viral protein input flux. We also study the case of a single bud evolution which can be followed by its fluorescence emission. We study the possibility to estimate shape parameters at the single viral particle level such as radius and completion for the human immunodeficiency virus (HIV) from single molecule localization superresolution microscopy. These techniques known as (f)PALM or (d)STORM, record labeled proteins position with a precision of few to tens of nanometers. We propose an approach base on the maximum likelihood statistical method which is tested on both real and simulated images of fully formed particles. Our results suggest that it can offer a precision on the determination of the global structure finner than the positioning precision of the single proteins. This efficiency is however tempered when the parameter of interest does not affect the figures of merit to which the method is sensitive such as the apparent area and the image contours
Read more

Page generated in 0.0161 seconds