• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 3
  • 1
  • Tagged with
  • 19
  • 12
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of axial flow and surface mass-flux on the stability of the rotating-sphere boundary layer

Barrow, Alistair January 2013 (has links)
A theoretical investigation is carried out into the linear stability of the boundary-layer flow around a rotating sphere immersed in an incompressible viscous fluid. Two potentially stabilising mechanisms are considered: a forced uniform axial flow in the surrounding fluid, and the introduction of mass suction/injection through the surface of the sphere. The investigation is broadly split into a “local” analysis, where a parallel-flow assumption is made which limits the study to individual latitudinal positions; and a “global” analysis, where the entire streamwise extent of the flow is considered. In the local analysis, both stationary and travelling convective disturbances are considered. For a representative subset of the parameter space, critical Reynolds numbers are presented for the predicted onset of convective and absolute instabilities. Axial flow and surface suction are typically found to postpone the onset of all types of instability by raising the critical Reynolds number, whereas surface injection has the opposite effect. This is further demonstrated by a consideration of the convective and absolute growth rates at various parameter values. The results of the global analysis suggest that the rotating sphere can support a self-sustained, linearly globally-unstable global mode for sufficiently large rotation rates. This is in contrast to the case of the rotating disk, where it is generally accepted that self-sustained linear global modes do not occur.
2

Particle laden inhomogeneous elastic turbulence / Turbulence élastique inhomogène chargée de particules

Garg, Himani 15 February 2019 (has links)
Les expériences de laboratoire montrent que, même dans des solutions très diluées, l’interaction des polymères avec des écoulements fluides peut modifier considérablement les propriétés des écoulements turbulents ou, si l’écoulement est laminaire, peut déclencher un nouveau type de mouvement irrégulier appelé «turbulence élastique». Les écoulements dans un tel régime dynamique sont prometteurs pour améliorer l'efficacité du mélange dans les applications microfluidiques, qui impliquent souvent la présence d'impuretés de taille finie en suspension, telles que des particules solides petites et lourdes. La compréhension de la dispersion des particules dans les écoulements à grand nombre de Reynolds des fluides newtoniens et non newtoniens a déjà été abordée dans des études antérieures, qui ont mis en évidence des effets à la fois à grande et à petite échelle et est un sujet d'intérêt à la fois fondamental et pour des applications environnementales ou industrielles par exemple. Cependant, la dynamique des particules dans les écoulements élastiques et turbulents reste encore peu explorée. L’étude ici vise à étudier les propriétés d’agrégation de particules matérielles ponctuelles (plus lourdes que le fluide porteur) dans les fluides viscoélastiques dans des conditions de turbulence élastique (c’est-à-dire dans le cas de faible inertie du fluide et de grande élasticité). Nous effectuons des simulations numériques directes bi-dimensionelles d’écoulements périodiques avec cisaillement moyen de Kolmogorov avec des solutions de polymères dilués décrites par le modèle Oldroyd-B. Les caractéristiques à petite et grande échelle de la distribution résultante inhomogène de particules sont examinées, en se concentrant sur leur connexion avec la structure sous-jacente de l’écoulement . Notre analyse révèle que les particules sont préférentiellement regroupées dans des régions où les polymères sont instantanément maximalement étirés. L’intensité d’un tel phénomène dépend de l’interaction paramétrée par le nombre de Stokes, entre l’inertie des particules et l’échelle de temps typique associée à l’écoulement de turbulence élastique, et est la plus grande pour des valeurs intermédiaires d’inertie de particules. En particulier, il est montré que la concentration préférentielle de suspensions de particules inertielles dans de tels écoulements ressemblant à la turbulence découle de la nature dissipative de leurs dynamiques. Nous établissons une caractérisation quantitative de ce phénomène (utilisant la corrélation et la dimension de Kaplan-Yorke) qui permet de le relier à l’accumulation de particules dans des régions de l’écoulement filamenteuses fortement déformées produisant des grappes de dimension fractale faiblement supérieure à 1. À plus grande échelle, les particules subissent une ségrégation de type turbophorétique dans la direction non-homogéne de l'écoulement. En effet, nos résultats indiquent que la distribution des particules est fortement liée aux structures moyennes de l’écoulement de type turbulent. En raison de la turbophorèse, les profils de densité moyenne atteignent leur maximum dans les régions où la diffusivité turbulente est la plus faible. L'inhomogénéité à grande échelle de la distribution des particules est interprétée dans le cadre d'un modèle dérivé dans la limite d'inertie des particules, petite mais finie. Les caractéristiques qualitatives de différents observables (telles que L'écart quadratique moyen de la distribution des particules par rapport à la distribution uniforme) sont, dans une large mesure, indépendantes de l'élasticité du l’écoulement. Quand celle-ci est augmentée, on constate cependant que cette dernière diminue légèrement le degré global moyen de mélange turbophorétique. / Laboratory experiments show that, even in very dilute solutions, the interaction of polymers with fluid flows can dramatically change the properties of turbulent flows or, if the flow is laminar, can trigger a new sort of irregular motion named “elastic turbulence”. Flows in such a dynamical regime are promising for enhancing mixing efficiency in microfluidic applications, which often involve the presence of suspended finite-size impurities, like small and heavy solid particles. The understanding of particle dispersion in high-Reynolds number flows of Newtonian, as well as non-Newtonian, fluids were addressed by previous investigations, and it is a subject of interest both at a fundamental level and for applications, e.g., environmental or industrial ones. However, the dynamics of particles in elastic turbulent flows are still quite unexplored.The present study aims at investigating the aggregation properties of pointlike material particles (heavier than the carrying fluid) in viscoelastic fluids in elastic turbulence conditions (i.e. in the limit of vanishing fluid inertia and large elasticity). We carry out extensive direct numerical simulations of the periodic Kolmogorov mean shear flow of two-dimensional dilute polymer solutions described by the Oldroyd-B model. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the underlying flow structure. Our analysis reveals that particles are preferentially clustered in regions of instantaneously maximally stretched polymers. The intensity of such a phenomenon depends on the interplay, parametrized by the Stokes number, between the particle inertia and the typical time scale associated with the elastic turbulence flow, and is the largest for intermediate values of particle inertia.In particular, it is shown that the preferential concentration of inertial particle suspensions in such turbulent-like flows follow from the dissipative nature of their dynamics. We provide a quantitative characterization of this phenomenon (using correlation and Kaplan-Yorke dimension) that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of fractal dimension slightly above 1.At larger scales, particles are found to undergo turbophoretic-like segregation along the non-homogeneity direction of the flow. Indeed, our results indicate that the particle distribution is strongly related to the mean turbulent-like structures of the flow. As an effect of turbophoresis, average density profiles peak in the regions of lowest turbulent eddy diffusivity. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables (such as root-mean-square deviation of the particle distribution, relative to the uniform one) are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing.
3

Numerical simulation of turbulent viscoelastic fluid flows : flow classification and preservation of positive-definiteness of the conformation tensor / Simulation numérique d’écoulements turbulents de fluides visco-élastiques classification d’écoulements et préservation de la positivité du tenseur de conformation

Martins, Ramon Silva 25 November 2016 (has links)
Le but de ce travail est de fournir une amélioration de la connaissance sur le phénomène de la réduction de la traînée induite par polymère en considérant certains aspects de sa simulation numérique et les changements qui se produisent dans la cinématique de l’écoulement. Dans un premier temps, les transformations du type racine carrée et kernel racine-k pour le tenseur de conformation du modèle FENE-P ont été implémentées afin d’assurer la positivité du tenseur de conformation. Cependant, ces approches divergent en raison du caractère non-borné du tenseur de conformation. Cette contrainte n’a pas été respectée, même avec l’inclusion de diffusion artificielle. L’effet d’amortissement de la diffusion artificielle a permis d’assurer la stabilité numérique, mais il aboutit à une réduction de la traînée relative de 22% à 42% plus faible que prévue par les approches standards. Dans un second temps, les modes hyperboliques, paraboliques et elliptiques des écoulements turbulents viscoélastiques ont été évalués en utilisant de différents critères de classification d’écoulements. Certains avantages concernant les critères objectifs ont été discutés. On a observé que les domaines hyperboliques contribuent de manière significative à la cinématique de l’écoulement. Enfin, on a observé une tendance des domaines elliptiques et hyperboliques à devenir paraboliques et que cette tendance augmente avec l’élasticité. / The purpose of this work is to provide an enhancement of the knowledge about the polymer-induced drag reduction phenomenon by considering some aspects of its numerical simulation and the changes that occur in the flow kinematics. In the first part, the square root and kernel root-k formulations for the conformation tensor in the FENE-P model were implemented and showed to preserve the positiveness of the conformation tensor. However, they led to numerical divergence due to the loss of boundedness of the conformation tensor. This constraint was violated even with the inclusion of artificial diffusion. The damping effect of artificial diffusion helped to ensure numerical stability, but led to relative drag reduction from 22% to 42% lower than expected from traditional methods. In the second part, the hyperbolic, parabolic and elliptic modes of turbulent viscoelastic flows were evaluated by means of different flow classification criteria. Some advantages of considering objective criteria were discussed. It was shown that the hyperbolic domains significantly contribute to the flow kinematics. Finally, a tendency of both elliptic and hyperbolic domains to become parabolic was observed and found to increase with the elasticity.
4

Spectral analysis of the turbulent energy cascade and the development of a novel nonlinear subgrid-scale model for large eddy simulation / Analyse spectrale de la cascade d’énergie turbulente et développement d’un nouveau modèle non-linéaire sous-maille pour la simulation de grandes échelles

Andrade, João Rodrigo 27 March 2019 (has links)
L’objectif de cette thèse est d’analyser et d’acquérir de nouvelles connaissances sur le comportement de la dynamique de petites échelles des écoulements turbulents et de proposer un nouveau modèle sous-maille non linéaire pour la simulation des grandes échelles de la turbulence. De cette façon, la présente thèse est subdivisée en trois parties principales. Le premier sujet concerne l’analyse des incertitudes statistiques associées aux données de simulation numérique directe pour des écoulements turbulents en canal plan, fournissant une nouvelle quantification physique de ces erreurs. Dans cette analyse, l’erreur de vitesse moyenne est estimée en prenant en compte le tenseur de contrainte de Reynolds et en utilisant l’équation de forces moyennes. Cette analyse est effectuée afin de vérifier la qualité des données statistiques provenant de la simulation numérique directe appliquée dans le présent travail. Deuxièmement, pour comprendre la physique contenue dans l’ensemble du spectre de nombre d’ondes des écoulements turbulents, une analyse du bilan d’énergie cinétique turbulente dans un écoulement de canal plan turbulent complètement développé est réalisée. L’analyse est centrée sur l’influence du nombre de Reynolds sur la cascade spectrale d’énergie et la cascade d’énergie correspondante dans l’espace physique en présence d’inhomogénéité et d’anisotropie. Finalement, nous présentons un nouveau modèle sous-maille non linéaire, conçu pour la simulation des grandes échelles de la turbulence, basé sur un ensemble de tenseurs objectifs. Dans le modèle de fermeture proposé, le tenseur de contrainte à l’échelle sous-maille est fonction du tenseur de la vitesse de déformation et du tenseur de non-persistance de contraintes, où les deux sont des entités cinématiques locales et objectives. Le tenseur non-persistance de contraintes représente la capacité locale du fluide à ne pas être constamment étiré. Pour vérifier la cohérence du modèle proposé, de tests a priori et a posteriori sont effectués en simulant différents écoulements turbulents délimités par de parois. Des comparaisons avec le tenseur de contrainte exact à l’échelle de sous-maille et de données expérimentales ont révélé que l’inclusion de termes non linéaires dans le modèle sous-maille peut conduire à de meilleurs résultats, montrant le potentiel important de la base tensorielle proposée. / The purpose of the present work is to analyze and to provide an enhancement of the knowledge about the subgrid-scale behavior and to propose novel nonlinear subgrid-scale models for large eddy simulations of turbulent fluid flows. In this way, the present thesis is subdivided into three main parts. The first topic is an analysis of the statistical uncertainties associated with direct numerical simulation data for turbulent channel flow, showing a novel physicallybased quantification of these errors. In this analysis, the mean velocity error is estimated by considering the Reynolds stress tensor, and using the balance of mean force equation. This analysis is performed in order to verify the quality of the statistical data coming from the direct numerical simulation applied in the present work. Secondly, seeking to understand the contained physics in the whole wavenumber spectrum of turbulent flows, an analysis of the spectral turbulent kinetic energy budget in fully developed turbulent plane channel flow is performed. The analysis is focused on the influence of the Reynolds number on the spectral cascade of energy and the corresponding energy cascade in physical space in the presence of inhomogeneity and anisotropy. Finally, a novel nonlinear subgrid-scale model for large eddy simulation based on a set of objective tensors is presented. In the proposed closure model, the modeled subgrid-scale stress tensor is a function of the resolved rate-of-strain tensor and the resolved non-persistence-of-straining tensor, where both are local and objective kinematic entities. The non-persistence-of-straining tensor represents the local ability of the fluid to avoid being persistently stretched. To check the consistency of the proposed model, a priori and a posteriori tests are performed by simulating different wall-bounded turbulent flows. Comparisons with the exact subgrid-scale stress tensor and experimental data revealed that the inclusion of nonlinear terms on the subgrid-scale model can significantly increase the accuracy of the results, showing the great potential of the proposed tensorial base.
5

Convection turbulente et changement de phase, avec applications à la modélisation des mares de fonte arctiques / Turbulent convection and melting process with applications to sea ice melt ponds

Rabbanipour Esfahani, Babak 23 March 2018 (has links)
La fusion et la solidification couplées à des écoulements convectifs sont des processus fondamentaux dans le contexte géophysique, par exemple dans la formation des mares-mares arctiques. Ce système se caractérise par la présence d'écoulements instationnaires, chaotiques et souvent turbulents. Ce travail est motivé par des observations indiquant une réduction de la glace de mer arctique dans la mesure où le modèle global actuel ne pouvait pas prédire. Le but de ce travail est de fournir des informations sur les paramètres pertinents affectant la fusion / solidification dans les étangs de fonte des glaces de mer. La configuration idéalisée que nous considérons consiste en une couche de fluide chauffée par le bas et en contact avec une interface de fusion solide-liquide du côté supérieur. Nous étudions un tel système modèle au moyen d'outils numériques. Nous effectuons des simulations numériques directes par un algorithme Lattice Boltzmann basé sur l'enthalpie pour traiter la dynamique à long terme, ou de manière équivalente le régime à nombre élevé de Rayleigh, à la fois dans des configurations en deux et en trois dimensions. Nous montrons que le processus de convection et de fusion couplé n'améliore que faiblement le flux de chaleur et le mélange dans le système par rapport au réglage de Rayleigh-Bénard. Comme deux extensions au système de fusion, nous considérons l'effet de l'application de la vitesse sur la section liquide du système de fusion, l'effet de chauffage interne du système de fusion. / Melting and solidification coupled with convective flows are fundamental processes in the geophysical context, for instance in the Arctic melt-ponds formation. This system is characterized by the presence of unsteady, chaotic and often turbulent flows. This work is motivated by observations indicating reduction of Arctic sea-ice to the extent that present global model could not predict. The goal of this work is to provide information on the relevant parameters affecting the melting/solidification in sea ice melt ponds. The idealized setup we consider consists of a fluid layer heated from below and in contact with a solid-liquid melting interface on the top side. We investigate such a model system by means of numerical tools. We perform direct numerical simulations by an enthalpy based Lattice Boltzmann algorithm to address the long time dynamics, or equivalently the high Rayleigh number regime, both in two- and three-dimensional setups. We show that the coupled convection and melting process only weakly enhances heat flux and the mixing in the system as compared to the Rayleigh-Bénard setting. As two extensions to system of melting, we consider the effect of applying velocity on the liquid section of the melting system, which represents existence of wind-draft, and we consider the effect of internally heating the system of melting, which represents heating the system of melting through solar radiation.
6

The measurement of volume fraction and velocity profiles in vertical and inclined multiphase flows

Cory, James January 1999 (has links)
No description available.
7

Reconstruction of finely resolved velocity fields in turbulent flows from low resolution measurements / Reconstruction fine de champs de vitesses d’un écoulement turbulent à partir de mesures faiblements résolues

Nguyen, Van-Linh 28 September 2016 (has links)
Ce travail est à la jonction de deux domaines de recherche que sont la turbulence et le traitement d'image. L'objectif principal est de proposer de nouvelles méthodologies pour reconstruire les petites échelles de la turbulence à partir de mesures grande échelle. Une des contributions de ce travail est de revisiter des méthodes conventionnelles et de proposer de nouveaux modèles basés sur les travaux récents en traitement d’image pour les adapter à une problématique de turbulence. Le premier problème consiste à trouver une fonction de correspondance empirique entre les grandes et les petites échelles, une approche classique pour les modèles de type regression. Nous introduisons également une nouvelle méthode appelée “apprentissage de dictionnaire” pour laquelle une représentation couplée des grandes et des petites échelles est déduite par apprentissage statistique. Le deuxième problème est de reconstruire les informations à petites échelles par fusion de plusieurs mesures complémentaires. Le modèle de type “propagation de la moyenne non-locale” exploite la similarité des structures de l'écoulement alors que les modèles bayesiens de fusion proposent d'estimer le champ le plus probable en fonction d'informations données, on parle d’estimateur maximum a posteriori. Toutes les méthodes sont comparées et validées sur des bases de données numériques pour lesquelles les informations sont disponibles à toutes les échelles. Les performances des différentes approches sont analysées pour chacune des configurations. Ces résultats peuvent être utilisés dans une approche de type co-conception où il s’agit d'imaginer différents dispositifs expérimentaux définis conjointement avec les traitements numériques prévus pour extraire l’information utile. Les résultats de nos analyses peuvent être utilisés pour définir de nouvelles expériences qui maximisent la qualité des informations obtenues après traitement. / This work lies in between the research domains of turbulence and image processing. The main objectives are to propose new methodologies to reconstruct small-scale turbulence from measurements at large-scale only. One contribution of this work is a review of existing methods. We also propose new models inspired from recent works in image processing to adapt them to the context of turbulence. We address two different problems. The first problem is to find an empirical mapping function between large and small scales for which regression models are a common approach. We also introduce the use of “dictionary learning” to this problem of turbulence. The idea is to train coupled representations of large and small scales for reconstruction. The second problem is to reconstruct small-scale information via fusion of complementary measurements. The non-local means propagation model exploits the similarity of structures in the flow, while the Bayesian fusion model estimates the most probable fields given the measurements thanks to a maximum a posteriori estimate. All methods are validated and compared using numerical databases where fully resolved velocity fields are available. Performances of the proposed approaches are also characterized for various configurations. These results can be considered under the co-conception design framework, where different experimental setups are designed with respect to their corresponding post-processing. Our detailed analyses can be used to design new experiments that maximize the level of useful information after processing measurements.
8

Simulation of wall-bounded turbulent convective flows by finite volume Lattice Boltzmann method / Simulation des écoulements convectifs turbulents à proximité des parois avec la méthode Lattice Boltzmann de type volume fini

Shrestha, Kalyan 30 November 2015 (has links)
La méthode Lattice Boltzmann (LBM) est une alternative viable à la simulation directe (DNS) des équations de Navier et Stokes, particulièrement en Mécanique des Fluides. La clé de son succès se situe dans l’exactitude, la simplicité et la propriété conforme de parallélisation de l’algorithme stream-collision. L’inconvénient majeur de cette méthode provient de la limitation aux mailles cubiques spatialement uniformes. Pour y remédier, plusieurs extensions de la LBM aux mailles non-homogènes ont été proposées. Ces techniques ont été revisitées dans la thèse. La revue de maillage montre que la meilleure technique de raffinement remplit certains critères: elle doit satisfaire aux lois de conservation et doit être stable. Elle suggère l’adoption des approches de type Volumes Finis (FV LBM). Une revue de ces techniques a permis de conclure que bien qu’intéressantes, elles présentent de nombreux inconvénients. Cette étude présente une méthode de discrétisation de type FV pour Lattice Boltzmann de haute précision et avec un faible coût de calcul. Afin d’évaluer la performance de la méthode FV nous effectuons une comparaison systématique axée sur la précision et les performances de calcul avec la méthode de Lattice Boltzmann standard (ST). En particulier, nous cherchons à clarifier si et dans quelles conditions l’algorithme proposé et plus généralement tout algorithme FV peut être considéré comme la méthode de choix pour les simulations en Mécanique des Fluides. Nous présentons la première simulation des écoulements convectifs à haut nombre de Rayleigh réalisée avec une méthode Lattice Boltzmann de type FV avec des mailles réduites près de la paroi. / Lattice Boltzmann Method (LBM) has become a viable alternative to Navier-Stokes Direct Numerical Simulations (DNS) in fluid dynamics research. The key of this success is the accuracy/simplicity and parallelization compliant property of the stream-collision algorithm. One shortcoming however, comes from the limitation to spatially uniform cubic grids. To overcome this, several LBM extension to non-homogeneous grids have been proposed. These techniques have been reviewed in this thesis. Such review suggests that a better refinement technique should fulfill some properties: obey conservation laws and be stable. This suggests a pathway to adopt Finite Volume approaches (FV LBM). A review on such volumetric approach to LBM concludes that although interesting, at present such methods suffer from several drawbacks. In this study, a new FV discretization method for the Lattice Boltzmann equation that combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streaming (ST) Lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. We report the first successful simulation of high-Rayleigh number convective flow performed by a Lattice Boltzmann FV based algorithm with wall grid refinement.
9

Numerical simulation of the transition to elastic turbulence in viscoelastic inertialess flows / Simulation numérique de la transition à la turbulence élastique dans des écoulements viscoélastiques sans inertie

Oliveira Canossi, Dário 22 November 2019 (has links)
Le mélange de fluides représente un élément important du domaine de la dynamique des fluides, ce qui rend la compréhension de ce sujet si significative du point de vue fondamental et appliqué (p. ex., les processus industriels). Dans les géométries miniaturisées (dans des conditions typiques) le mélange est un processus lent, difficile et inefficace. Cela en raison du caractère naturellement laminaire de ces écoulements, qui oblige l'homogénéisation de différents éléments fluides à se produire par diffusion moléculaire au lieu d'un transport advectif, à l'action plus rapide. Cependant, des études expérimentales récentes sur les écoulements viscoélastiques à faible nombre de Reynolds ont montré qu'un mélange efficace peut être déclenché dans plusieurs configurations géométriques (y compris les dispositifs à l'échelle microscopique), par le phénomène de la turbulence élastique. La première partie de cette thèse est consacrée à la compréhension et à l'investigation des défis numériques présents dans le domaine de la dynamique des fluides non newtonienne, en se concentrant plus particulièrement au problème du haut nombre de Weissenberg. Ce dernier se manifeste par une rupture du schéma numérique, lorsque les équations d'évolution d'extra-contraintes polymériques sont évaluées de façon directe. Ceci pose des limites importantes à la possibilité de simuler avec précision des écoulements turbulents-élastiques. Nous fournissons des preuves numériques de l'effet bénéfique (en termes de gain en stabilité) de la décomposition en racine carrée de l'extra-contrainte dans une implémentation en volumes finis des équations régissant l'écoulement dans un canal bidimensionnel. La deuxième partie de la thèse traite de l’émergence et de la caractérisation d’instabilités purement élastiques dans des simulations numériques de fluides Oldroyd-B à nombre de Reynolds zéro dans une géométrie du type cross-slot bidimensionnel. Grâce à un travail numérique approfondi, nous présentons une caractérisation détaillée des instabilités purement élastiques. Ces instabilités apparaissant dans le système pour de larges plages d'élasticité du fluide et de concentration des polymères. Pour les solutions concentrées et des nombres de Weissenberg assez grands, nos simulations indiquent l’apparition d’un écoulement désordonné pointant vers la turbulence élastique. Nous analysons le passage à une dynamique irrégulière et caractérisons les propriétés statistiques de tels écoulements très élastiques, en discutant des similitudes et des différences avec les résultats expérimentaux de la littérature. / Fluid mixing represents an important component of the field of fluid dynamics, what makes the understanding of this subject so meaningful from both the fundamental and applied (e.g. industrial processes) point of view. In miniaturised geometries, under typical conditions, mixing is a slow, difficult and inefficient process due to the naturally laminar character of these flows, which forces the homogenisation of different fluid elements to occur via molecular diffusion instead of faster-acting advective transport. However, recent experimental studies on low-Reynolds-number viscoelastic flows have shown that efficient mixing can be triggered in several geometrical configurations (including micro-scale devices), by the phenomenon of elastic turbulence. The first part of this thesis is devoted to the understanding and investigation of numerical challenges present in the domain of non-Newtonian fluid dynamics, focusing in particular on the high-Weissenberg number problem. The latter manifests as a breakdown of the numerical scheme when the polymeric extra-stress evolution equations are implemented in a direct way, which poses severe limits to the possibility to accurately simulate elastic turbulent flows. We provide numerical evidence of the beneficial effect (in terms of increased stability) of the square-root decomposition of the extra-stress in a finite-volume-based implementation of the governing equations in a two-dimensional channel. The second part of the thesis reports about the emergence and characterisation of purely-elastic instabilities in numerical simulations of zero-Reynolds-number Oldroyd-B fluids in a two-dimensional cross-slot geometry. By means of extensive numerical work, we provide a detailed characterisation of the purely-elastic instabilities arising in the system for wide ranges of both the fluid elasticity and the polymer concentration. For concentrated solutions and large enough Weissenberg numbers, our simulations indicate the emergence of disordered flow pointing to elastic turbulence. We analyse the transition to irregular dynamics and characterise the statistical properties of such highly elastic flows, discussing the similarities and differences with experimental results from the literature.
10

Développement d'une approche particulaire de type SPH pour la modélisation des écoulements multiphasiques avec interfaces variables / Development of Smoothed Particle Hydrodynamics approach for modelling of multiphase flows with interfaces

Szewc, Kamil 24 June 2013 (has links)
L'approche Smoothed Particle Hydrodynamics (SPH) est une méthode de calcul pour simuler des écoulements fluides avec une méthode Lagrangienne de type suivi de particules. A l'inverse des méthodes Euleriennes, ce type d'approche ne nécessite pas de maillage. C'est là l'un des atouts majeurs de l'approche SPH puisqu'elle permet de s'affranchir des méthodes de suivi d'interfaces couramment utilisées dans les approches Euléeriennes (par exemple Volume-of-Fluid, Level-Set ou Front-Tracking). L'approche SPH est donc de plus en plus utilisée dans les domaines de l'hydro-ingénierie et de la géophysique notamment de part le traitement naturel des écoulements à surface libre dans la méthode SPH. Cependant, l'approche SPH n'est utilisée que depuis peu pour simuler des écoulements multiphasiques complexes et de nombreux problèmes restent en suspens, notamment concernant une formulation adéquate ou le micro-mélange aux interfaces. L'un des principaux enjeux de ces travaux de thèse est d'analyser de façon objective les différentes approches de type SPH existantes et d'évaluer leur capacité à simuler des écoulements multiphasiques complexes. Ainsi, la modélisation des phénomènes liés à la tension de surface a été réalisée et validée via l'utilisation de techniques de type Continuum Surface Force. Les phénomènes de convection naturelle ont quant à eux été modélisés grâce à une nouvelle formulation plus générale (non-Boussinesq). Une partie de ces travaux est dédiée à l'étude des problèmes de micro-mélange aux interfaces: les effets indésirables (notamment la fragmentation de l'interface) sont analysés et des solutions sont proposées. Une autre part de travail porte sur la modélisation des mouvements ascendants de bulles dans des liquides, avec l'inclusion des interactions entre bulles. Des simulations SPH ont été réalisées pour différents régimes d'écoulement, chacun d'eux correspondant à un ratio spécifique entre la tension de surface, la viscosité et la flottabilité. Les prédictions numériques de la topographie des bulles, de leur vitesse ainsi que de leur coefficient de trainée ont été validées. Pour ce faire, les résultats numériques ont été comparés non seulement aux données expérimentales de référence mais également à d'autres simulations numériques de bulles ascendantes. Dans ces travaux de thèse, une étude détaillée des concepts liés aux contraintes d'incompressibilité a été réalisée. Dans cet objectif, deux traitements différents ont été comparés: l'approche faiblement compressible (où une équation d'état adéquate est choisie) et l'approche incompressible (où une projection des champs de vitesse sur un espace sans divergence est réalisée de deux facons différentes). La pertinence de ces modèles pour des simulations d'écoulements multiphasiques est également évaluée. Les problèmes associés aux paramètres numériques sont discutés et un choix approprié de ces paramètres est proposé. Pour ce faire, de nombreux calculs de validation en deux et trois dimensions ont été réalisés. Enfin, une extension est proposée pour simuler les phénomènes liés à l'ébullition via une approche SPH. Ce sujet étant encore en friche, de nouvelles idées et schémas sont proposés pour le changement de phase liquide-vapeur dans l'approche SPH / Smoothed Particle Hydrodynamics (SPH) is a fully Lagrangian, particle based approach for fluid-flow simulations. One of its advantages over Eulerian techniques is no need of a numerical grid. Therefore, there is no necessity to handle the interface shape as it is done in Volume-of-Fluid, Lavel-Set or Front-Tracking methods. Thus, the SPH approach is increasingly used for hydro-engineering and geophysical applications involving free-surface flows where the natural treatment of evolving interfaces makes it an attractive method. However, for real-life multi-phase simulations this method has only started to be considered and many problems like a proper formulation or a spurious fragmentation of the interface remain to be solved. One of the aims of this work is to critically analyse the existing SPH variants and assess their suitability for complex multi-phase problems. For modelling the surface-tension phenomena the Continuum Surface Force (CSF) methods are validated and used. The natural convection phenomena are modeled using a new, more general formulation, beyond the Boussinesq approximation. A substantial part of the work is devoted to the problem of a spurious fragmentation of the interface (the micro-mixing of SPH particles). Its negative effects and possible remedies are extensively discussed and a new variant is proposed. Contrary to general opinion, it is proven that the micro-mixing is not only the problem of flows with neglegible surface tension. A significant part of this work is devoted to the modelling of bubbles rising through liquids, including bubble-bubble interactions. The SPH simulations were performed for several flow regimes corresponding to different relative importance of surface tension, viscosity and buoyancy effects. The predicted topological changes, bubble terminal velocity and drag coefficients were validated with respect to reference experimental data and compared to other numerical methods. In the work, fundamental concepts of assuring the incompressibility constraint in SPH are also recalled. An important part of work is a thorough comparison of two different incompressibility treatments: the weakly compressible approach, where a suitably chosen equation of state is used, and truly incompressible method (in two basic variants), where the velocity field is projected onto a divergence-free space. Their usefulness for multi-phase modelling is discussed. Problems associated with the numerical setup are investigated, and an optimal choice of the computational parameters is proposed and verified. For these purposes the study is supported by many two- and three-dimensional validation cases. In addition, the present work opens new perspectives to future simulations of boiling phenomena using the SPH method. First ideas and sketches for the implementation of the liquid-vapour phase change are presented

Page generated in 0.0233 seconds