• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of the counterion in the catalytic activity of vanadium(V)(salen) complexes

Omedes Pujol, Marta January 2012 (has links)
Over the last ten years, the North group has developed VO(salen)X complexes as an efficient catalytic system for the asymmetric addition of trimethylsilyl cyanide to aldehydes. It was found that the nature of the counterion X has a significant influence on the catalytic activity, but not on the enantioselectivity of the reaction. Complexes with the most coordinating counterions displayed the highest levels of catalytic activity. Kinetic studies revealed that the monometallic VO(salen)X complexes exist in equilibrium with bimetallic complexes, and both are catalytically active. This was supported by mass spectrometry which detected both [VO(salen)]+ and [VO(salen)]2+ ions, with the latter involving both V(V) and V(IV) ions. In this project, electron paramagnetic resonance spectroscopy (EPR) was used to monitor vanadium(IV) formation, revealing that the rate of formation is directly related to the catalytic activity of the complex. Also using EPR, cyanide was found to be the reducing agent and to be oxidized to cyanogen via a non-radical mechanism. Oxovanadium complexes bearing highly coordinating counterions were most rapidly reduced to vanadium(IV), thus favouring the formation of highly reactive bimetallic species. In contrast, less coordinating counterions resulted in the formation of much lower amounts of dinuclear species. The potential of the counterion to display Lewis-base catalysis became increasingly clear during this project. A Hammett plot based on a series of para- and meta-substituted benzaldehydes, was used to determine the relative importance of Lewis-acid and Lewis-base catalysis within VO(salen)X complexes. As expected, the vanadium catalysts studied gave a positive reaction constant indicating that there is an increase in electron density at the benzylic carbon during the transition state. However, a less positive reaction constant (ρ = 1.2) was found for VO(salen)NCS which possessed a strongly coordinating counterion, compared to that of VO(salen) EtOSO3 (ρ = 1.9) which possessed an ionic counterion, which indicates a possible Lewis base influence from the thiocyanate counterion. These complexes were also compared to metal(salen) complexes of titanium and aluminium. The latter required the presence of triphenylphosphine oxide as an achiral Lewis-base cocatalyst, and exhibited predominantly Lewis base catalysis with a reaction constant of 0.7, whereas the titanium catalyst was found to function almost entirely as a Lewis-acid catalyst with a reaction constant ρ = 2.4. Thiocyanate was also found to be an excellent Lewis base ii catalyst for racemic cyanohydrin synthesis, for which a mechanism involving activation of the trimethylsilyl cyanide through a hypervalent silicon bond was suggested. The use of propylene carbonate as an alternative solvent to dichloromethane was shown to affect the rate of cyanohydrin synthesis when VO(salen)NCS was used as the catalyst. Thus, a mechanistic study was undertaken. The reaction was found to obey second order kinetics in both propylene carbonate and dichloromethane. However, when the order with respect to the catalyst was determined, it became evident that propylene carbonate altered the monomer-dimer equilibrium towards the monomer. The monomer was the most abundant species in solution and hence was responsible for most of the catalytic activity. 51V-NMR experiments provided evidence for propylene carbonate coordination to VO(salen)NCS, blocking the sixth coordination site, and hence inhibiting both dimer formation and aldehyde coordination. Further evidence for this effect was provided by a Hammett analysis, which showed that Lewis base catalysis was more pronounced when propylene carbonate was the solvent.
2

Solvothermal Routes to New Families of Vanadium-Catecholate Complexes

Scales, Emma January 2008 (has links)
Solvothermal techniques have been successfully used to access several new families of vanadium-catecholate complexes. The rich redox chemistry associated with vanadium and also the catecholate/semiquinone/quinone couple have produced an extraordinarily diverse range of products from the same simple starting materials.
3

Deep space radiations-like effects on VO2 smart nano-coatings for heat management in small satelittes

Mathevula, Langutani Eulenda 01 1900 (has links)
Thermal control in spacecraft will be increasingly important as the spacecraft grows smaller and more compact. Such spacecraft with low thermal mass will have to be designed to retain or reject heat more efficiently. The passive smart radiation device (SRD) is a new type of thermal control material for spacecraft. Current space thermal control systems require heaters with an additional power penalty to maintain spacecraft temperatures during cold swings. Because its emissivity can be changed without electrical instruments or mechanical part, the use of SRD decreases the request of spacecraft power budget. The (SRD) based on VO2 films is one of the most important structures of the functional thermal control surface, being lighter, more advanced and without a moving devices. A large portion of the heat exchange between an object in space and the environment is performed throughout radiation, which is in turn determined by the object surface properties. The modulation device is coated on the spacecraft surface and thus provides a thermal window that can adapt to the changing conditions in orbit. VO2 is well known to have a temperature driven metal to insulator transition ≈ 68ᴼC accompanying a transformation of crystallographic structure, from monoclinic (M-phase, semiconductor) at temperature below 68ᴼC to tetragonal (R-phase, metal) at temperature above 68ᴼC. This transition temperature is accompanied by an increase of infrared reflectivity and a decrease of infrared emissivity with increasing temperature. This flexibility makes VO2 potentially interesting for optical, electrical, and electro-optical switches devices, and as window for energy efficiency buildings applications. This study reports on effect of thickness on VO2 as well as the effect of proton irradiation on VO2 for active smart radiation device (SRD) application. VO2 was deposited on mica by Pulsed laser deposition techniques. The thickness of the film was varied by varying the deposition time. To characterize VO2 the following techniques were performed: XRD, AFM, SEM, TEM, XPS, RBS, RAMAN and transport measurements for optical properties. The effect of proton irradiation was observed using the SEM, where the change in structure, from crystal grains to rods, was observed. / Physics / M.Sc. (Physics)
4

Deep space radiations-like effects on VO2 smart nano-coatings for heat management in small satelittes

Mathevula, Langutani Eulenda 01 1900 (has links)
Thermal control in spacecraft will be increasingly important as the spacecraft grows smaller and more compact. Such spacecraft with low thermal mass will have to be designed to retain or reject heat more efficiently. The passive smart radiation device (SRD) is a new type of thermal control material for spacecraft. Current space thermal control systems require heaters with an additional power penalty to maintain spacecraft temperatures during cold swings. Because its emissivity can be changed without electrical instruments or mechanical part, the use of SRD decreases the request of spacecraft power budget. The (SRD) based on VO2 films is one of the most important structures of the functional thermal control surface, being lighter, more advanced and without a moving devices. A large portion of the heat exchange between an object in space and the environment is performed throughout radiation, which is in turn determined by the object surface properties. The modulation device is coated on the spacecraft surface and thus provides a thermal window that can adapt to the changing conditions in orbit. VO2 is well known to have a temperature driven metal to insulator transition ≈ 68ᴼC accompanying a transformation of crystallographic structure, from monoclinic (M-phase, semiconductor) at temperature below 68ᴼC to tetragonal (R-phase, metal) at temperature above 68ᴼC. This transition temperature is accompanied by an increase of infrared reflectivity and a decrease of infrared emissivity with increasing temperature. This flexibility makes VO2 potentially interesting for optical, electrical, and electro-optical switches devices, and as window for energy efficiency buildings applications. This study reports on effect of thickness on VO2 as well as the effect of proton irradiation on VO2 for active smart radiation device (SRD) application. VO2 was deposited on mica by Pulsed laser deposition techniques. The thickness of the film was varied by varying the deposition time. To characterize VO2 the following techniques were performed: XRD, AFM, SEM, TEM, XPS, RBS, RAMAN and transport measurements for optical properties. The effect of proton irradiation was observed using the SEM, where the change in structure, from crystal grains to rods, was observed. / Physics / M.Sc. (Physics)
5

Χημεία συμπλόκων ενώσεων του βαναδίου : σύνθεση, δομή, φυσικές και βιολογικές ιδιότητες / Chemistry of vanadium coordination complexes : synthesis, structure, physical and biological properties

Σαρτζή, Χαρίκλεια 19 July 2012 (has links)
Στην παρούσα Διπλωματική Εργασία μελετήθηκε το σύστημα αντίδρασης του βαναδίου, V, με τον υποκαταστάτη δι-2-πυρίδυλο κετόνη, (py)2CO. Πρόκειται για έναν εξαιρετικά δημοφιλή υποκαταστάτη τον οποίο πολλές ερευνητικές ομάδες, όπως και η δική μας, έχουν μελετήσει με πολλά μεταλλοϊόντα, εκτός του βαναδίου. Η χημεία της δι-2-πυρίδυλο κετόνης βασίζεται στο γεγονός ότι η καρβονυλική της ομάδα μπορεί να υποστεί προσβολή από διάφορα πυρηνόφιλα (π.χ.H2O, ROH) και να σχηματίσει την ημικεταλική ή/και τη 1, 1-διολική μορφές της. Η μελέτη αυτού του συστήματος οδήγησε στη σύνθεση και το χαρακτηρισμό συμπλόκων του βαναδίου σε διάφορες οξειδωτικές βαθμίδες. Χαρακτηριστικό παράδειγμα αποτελεί το μικτού σθένους εννεαπυρηνικό σύμπλοκο (Et3NH)2[VIIVV8O18{(py)2CO2}4]∙2MeCN, με τον υποκαταστάτη να βρίσκεται στην διπλά αποπρωτονιωμένη 1, 1-διολική μορφή του. Ακόμη από το γενικό σύστημα αντίδρασης απομονώθηκαν σύμπλοκα VIV2, VV2, VIV3, VV4, VV12 και VΙV2 VV8 με τον υποκαταστάτη να βρίσκεται σε διάφορες μορφές. Μελετήθηκαν οι μαγνητικές ιδιότητες των συμπλόκων του τετρασθενούς βαναδίου. Η συμμετοχή ωστόσο του μετάλλου και των ενώσεων του σε διάφορες βιολογικές διεργασίες, όπως στη ρύθμιση του μεταβολισμού, στα ενεργά κεντρά μεταλλοενζύμων καθώς και η ικανότητά του να ενισχύει τη δράση της ινσουλίνης, μας έδωσαν το ερέθισμα να μελετήσουμε συγκεκριμένα την αντικαρκινική συμπεριφορά επιλεγμένων συμπλόκων που παρασκευάσαμε σε διάφορες σειρές καρκινικών κυττάρων. / In the present Diploma Work we have studied reactions of vanadium, V, sources and di-2-pyridyl ketone, (py)2CO. This ligand is very popular and its reactions with several metal ions have been investigated by many groups, including our group. No V complexes of (py)2CO have been reported. The chemistry of di-2-pyridyl ketone is based on the fact that its carbonyl group can be attacked by various nucleophiles (e.g. π.χ.H2O, ROH) to give the hemiketal or/and 1,1-diol forms. The systematic investigation of the V/(py)2CO reaction system has led to the synthesis and characterization of V compounds with the metal in various oxidation states. A characteristic example is the mixed-valence, enneanuclear complex (Et3NH)2[VIIVV8O18{(py)2CO2}4]∙2MeCN, in which the ligand participates in the doubly deprotonated 1,1-diolate form. From this general reaction system, VIV2, VV2, VIV3, VV4, VV12 και VΙV2 VV8 species have also been isolated. The magnetic properties of the VΙV complexes have also been studied. The participation of V compounds in important biological processes gave us the stimulus to study the antiproliferative activity of selected complexes in various cancer cell lines.
6

Etude expérimentale des relations structure-propriétés et des effets de dimensionnalité dans des oxydes de cobalt et de vanadium / Experimental investigation of structure - property relationships and dimensionality aspects in some cobalt and vanadium oxides

Popuri, Srinivasa Rao 11 December 2012 (has links)
Les oxydes doubles lamellaires de cobalt et les oxydes de vanadium ont récemment suscité un vifintérêt suite à la découverte de leurs propriétés thermoélectriques prometteuses. Nos efforts visentà synthétiser de nouveaux composés dérivés de ces systèmes en utilisant la synthèse à l'étatsolide, l'échange d'ions et/ou les techniques hydrothermales. Afin de moduler et d'optimiser leurscaractéristiques thermoélectriques, nous avons ajusté la composition des oxydes de cobalt grâce àdes substitutions appropriées. Au sein du dioxyde de vanadium quasi-1D, nous avons considérétrois différentes structures polymorphes : M1, A et B. Nous avons exploré les différents systèmesen construisant l’ensemble des diagrammes de phases. Nous avons également étudié l'effet de lasubstitution du vanadium par le molybdène et le chrome sur la stabilité de ces structurespolymorphes et caractérisé leurs propriétés électroniques en relation avec les mécanismes detransition de phase. / Lamellar cobalt double oxides and vanadium oxides have recently attracted tremendous interestafter the discovery of their interesting thermoelectric properties. Our efforts aimed at synthesizingnovel related compounds using standard solid state, ion exchange and/or hydrothermaltechniques. In order to modulate and optimize their thermoelectric characteristics, we have tunedthe composition of cobalt double oxides by appropriate substitutions. In quasi 1D vanadiumoxides, the interplay between spin, charge and orbital degrees of freedom often leads toremarkable properties. Here we dealt with three different polymorphs of vanadium dioxide,namely M1, A and B. We explored the several novel systems by constructing systematic phasediagrams. We also studied the effect of Mo and Cr:V substitution on the stability of thesepolymorphs and characterized their electronic properties in relation with the structural phasetransition mechanisms. Finally, we explored their potentiality for thermoelectric applications.

Page generated in 0.0175 seconds