• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 12
  • 2
  • Tagged with
  • 118
  • 17
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The application of an Eulerian chemical and transport model (CMAQ) at fine scale resolution to the UK

Pederzoli, Anna January 2008 (has links)
Present-day numerical air quality models are considered essential tools for predicting future air pollutant concentrations and depositions, contributing to the development of new effective strategies for the control and the reduction of pollutant emissions. They simulate concentrations and depositions of pollutants on a wide range of scales (global, national, urban scale) and they are used for identifying critical areas, integrating measurements and achieving a deeper scientific understanding of the physical and chemical processes involving air pollutants in the atmosphere. The use of comprehensive air quality models started in the late 1970s and since then their development has increased rapidly, hand in hand with the rapid increase in computational resources. Today more and more complex and computationally expensive numerical models are available to the scientific community. One of these tools is the Community Multi-Scale Air Quality System (CMAQ), developed in the 1990s by the US Environmental Protection Agency (EPA) and currently widely applied across the world for air pollution studies. This work focuses on the application of CMAQ to the United Kingdom, for estimating concentrations and depositions of acidifying pollutants (NOX, NHX, SOX) on a national scale. The work is divided into seven chapters, the first one describing the main issues related to the emission and dispersion in the atmosphere of acidifying species. It also includes a brief overview of the main international policies signed in the last thirty years in order to reduce the problem of acidification in Europe, as well as a brief description of some models mentioned in this thesis. The second one describes the main features of CMAQ and addresses some issues such as the use of a nesting process for achieving temporally and spatially resolved boundary concentrations, and the implementation of the model on parallel machines, essential for reducing the simulation computing time. It also describes how this study is part of a wider context, which includes the application of CMAQ in the United Kingdom by other users with different scientific purposes (aerosols processes, air quality in the urban area of London, contribution of UK power stations to concentrations and depositions etc.). The third part of the thesis focuses on the application and evaluation over the United Kingdom of the 5th Generation Mesoscale Model MM5, used for providing 3D meteorological input fields to CMAQ. This study was performed assuming that an accurate representation of depositions and concentrations of chemical species cannot be achieved without a good estimate of the meteorological parameters involved in most of the atmospheric processes (transport, photochemistry, aerosol processes, cloud processes etc.). The fourth part of the thesis describes the preliminary implementation of the Sparse Matrix Operational Kernel Emission System (SMOKE) in the United Kingdom. The processor provides input emissions to CMAQ. The use of SMOKE is usually avoided in CMAQ applications of outside America, and CMAQ input emission files are prepared by the application of other software. The reason is that the model requires radical changes for being applied outside Northern and Central America. Some of these changes have been made in this study such as the adaptation of the European emission inventory EMEP and the UK National Inventory NAEI to the modelling system for point and area sources, the introduction of new European emission temporal profiles in substitution of the American ones and the introduction of new geographical references for the spatial allocation of emissions. In the fifth chapter the results of CMAQ application over the UK are discussed. The study focuses on NOX, SO2, NH3 and + 4 NH . Maps of concentration are presented and modelled data are compared to measurements from two different air quality networks in the UK. An analysis of the performance of CMAQ over the UK is also performed. In the final chapter an annual inter-comparison between CMAQ and the Lagrangian transport model FRAME is carried out. Maps of annual wet deposition fluxes of NHX, NOY and SOX for year 1999 are presented. The results of both models are compared to one another and they are also compared to values from the UK official data set CBED. Finally, the last chapter suggests the work that has to be done in the future with CMAQ and it summarizes the conclusions.
72

Investigating the climatic impacts of stratospheric aerosol injection

Jones, Anthony Crawford January 2017 (has links)
In this thesis, we assess various climatic impacts of stratospheric aerosol injection (SAI), a geoengineering proposal that aims to cool Earth by enhancing the sunlight-reflecting aerosol layer in the lower stratosphere. To this end, we employ simpleradiative transfer models, a detailed radiative transfer code (SOCRATES), and two Hadley Centre general circulation models (HadGEM2-CCS and HadGEM2-ES). We find that the use of a light-absorbing aerosol (black carbon) for SAI would result in significant stratospheric warming and an unprecedented weakening of the hydrological cycle. Conversely, we find that SAI with sulphate or titania aerosol could counteract many of the extreme climate changes exhibited by a business-as-usual scenario (RCP8.5) by the end of this century. In a separate investigation, we show that volcanic aerosol dispersion following low-altitude volcanic eruptions can exhibit high sensitivity to the ambient weather state. Volcanic aerosol may get 'trapped' in a single hemisphere or transported to the opposite hemisphere depending simply on the meteorological conditions on the day of the eruption. In a final study, we investigate the impacts of SAI on North Atlantic tropical storm frequency. We find that SAI exclusively promoted in the southern hemisphere would increase North Atlantic storm frequency, and vice versa for northern hemisphere SAI. The results of this thesis should promote further research into SAI, which could conceivably be deployed to maintain global-mean temperature below the COP21 target of +1.5 K above pre-industrial levels, whilst society transitions onto a sustainable energy pathway. Conversely, the possibility of SAI being weaponised, for instance, to specifically increase North Atlantic tropical storm frequency, should motivate policymakers to implement effective regulation and governance to deter unilateral SAI deployments.
73

Assessing atmospheric composition impacts using a chemical climatology framework : case studies at the UK monitoring supersites

Malley, Christopher Stuart January 2016 (has links)
In the mid-1800s, monitoring networks were established to investigate atmospheric composition impacts, and the conditions giving rise to them. The development of these networks, in terms of coordination and standardisation between contributing sites, has resulted in large advances in knowledge of the nature of atmospheric composition. Currently thousands of sites collect high quality atmospheric composition measurements globally. This thesis contends that in order to maximise the information derived from these measurements, a further advancement in standardisation is required to encompass the interpretation of monitoring network data. Currently there are limited examples of a common interpretation of data applied across all sites in a monitoring network, especially in relation to specific atmospheric composition impacts. In this thesis, a ‘chemical climatology’ framework is outlined which provides a common basis for targeting analysis towards identifying the linkage between a specific atmospheric composition impact and its causal drivers. Case studies apply the chemical climatology framework to demonstrate its utility in deriving scientific and policy relevant conclusions using measurement data from the UK monitoring supersites located at Harwell and Auchencorth. Prior to this, the representativeness of each site is quantified through the application of cluster analysis to ozone data at 100 rural European sites to identify groupings of sites with similar ozone variation. Harwell was representative of rural locations within 120 km of London, while Auchencorth was representative of a larger, transboundary spatial domain including the remainder of the rural UK. The first case study links the impact of ozone on human health (quantified by SOMO10 and SOMO35 metrics) and vegetation (flux-based PODY) to meteorological and emissions drivers. Between 1990 and 2013 at Harwell, there was a significant decrease in the contribution of European ozone to determining the impacts. Improvement in the human health impact was heavily dependent on the choice of metric (SOMO35 decreased, no change in SOMO10), and the vegetation impacts had not improved as high ozone episodes frequently coincided with plant conditions which reduced ozone uptake. These chemical climates emphasise the need for ozone mitigation on larger (hemispheric) scales than currently implemented. Secondly, the impact of 27 measured VOCs on the extent of the regional ozone increment is assessed. The photochemical loss of VOCs is then linked to reported gridded VOC emissions using air mass back trajectory analysis. Ethene and m+p-xylene had the largest diurnal photochemical loss during maximum monthly regional ozone increment, but the key conclusion was the limitation introduced through the reporting of gridded VOC emissions in heavily aggregated source sectors. Finally, the conditions producing the long term health impact of particulate matter (quantified by annual average PM10 and PM2.5 concentrations) at each site are derived through integration of measurements of PM10 and PM2.5 with measurements of PM constituents. It is shown that the frequent, moderate PM10 and PM2.5 concentrations made a larger contribution to annual average values compared to the relatively infrequent high, episodic concentrations. The contribution of PM constituents and the contribution of local vs regional emissions to the range of PM concentrations is investigated. It was concluded that similar reductions in the contribution of secondary inorganic aerosol to the moderate PM10 and PM2.5 concentrations could be achieved from both the reduction of frequently traversed, smaller emissions sources, and less frequently traversed, larger emissions sources. The final chapter demonstrates the benefits from the extension of this framework to an entire monitoring network. It is envisioned that for each atmospheric composition impact, a standard set of statistics would be calculated which quantify the ‘impact’, ‘state’ and ‘drivers’ of that chemical climate. Calculation of ozone human health chemical climates across 100 European monitoring sites demonstrate this concept. This standardised interpretation of monitoring network data not only allows consistent comparison of an impact, but the common basis for determining how the impact is derived allows for the consideration of novel mitigation strategies and their spatial applicability.
74

Aerosol and surface properties remote sensing using AATSR

Huang, Haiyan January 2014 (has links)
This thesis describes a new algorithm based on the optimal estimation approach for the retrieval of atmospheric aerosol and surface properties from the Advanced Along- Track Scanning Radiometer (AATSR). This algorithm is a further development on the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC). The new algorithm is set up to use both visible and infrared channels of AATSR to retrieve aerosol optical depth (AOD), effective radius, white sky albedo at four wavelengths (550, 670, 870, and 1600 nm), surface temperature and aerosol layer height. This thesis can be divided into three main parts : 1) the development of the new ORAC algorithm, 2) comparisons of the retrieved AOD with the aerosol products from visible-channel ORAC retrieval: GlobAEROSOL, and with the measurements from AErosol RObotic NETwork (AERONET), and 3) validations of the retrieved sea surface temperature (SST) with the measurements from ship-based radiometers (Infrared Sea surface temperature Autonomous Radiometer, ISAR) and the measurements from drifting buoys. In this thesis aerosols are assigned to four classes, marine clean at two different relative humidities, spherical dust and non-spherical dust. The estimated retrieval error is 0.012 in AOD and 0.083 K in SST. Comparing with the GlobAEROSOL products, the new algorithm (denoted by ORAC) retrieves lower AOD (0.071 ± 0.012) (median ± RMS) and higher sea surface albedo globally (0.067 ± 0.006). The lower AOD, which also occurs in regional scales, is a promising result as previous studies showed GlobAEROSOL overestimated AOD especially over open ocean. The comparison with ground-based measurements (AERONET) shows a good agreement between ORAC AOD and AERONET AOD over ocean, the correlation is 0.820 at 550 nm and 0.807 at 870 nm, and the differences in AOD between the two datasets are 0.067 ± 0.214 for 550 nm and 0.064 ± 0.167 for 870 nm. In contrast weaker corrections, 0.312 at 550 nm and 0.275 at 870 nm, are found over land, and the median difference between the two datasets are nearly 0.2 for both 550 μm and 870 μm. For three collocation criteria, the ORAC retrieved SST shows very high correlations with ISAR measurements (better than 0.980). Comparing with ISAR, ORAC SST has positive biases (0.150 to 0.117 K) and relative significant root mean squares (RMS) (0.481 to 0.430 K). Comparing with the drifting buoy measurements, the bias in retrieved SST is −0.067 ± 0.366 K for all the matches and −0.003 ± 0.298 K for the matches under high wind speed conditions (≥ 6 ms−1). The error analysis indicates the uncertainties in temperature profile, water vapour profile, surface emissivity and forward model may affect the accuracy of retrieved SST. These validation results suggest that the new ORAC algorithm is a successful approach to aerosol and surface retrieval over ocean, which is able to add to the current knowledge by improving current estimates of aerosol and surface properties. Most validation results presented in this thesis are under conditions of low AOD, it can been seen that the retrieved SST is not severely biased. Further validation is required to estimate the performance of ORAC at different levels of aerosol loading.
75

Turbulence studies from a tethered balloon

Rayment, Robert January 1975 (has links)
No description available.
76

Global scale modelling of ozone deposition processes and interaction between surface ozone and climate change

Centoni, Federico January 2017 (has links)
Atmospheric concentrations of surface ozone (O3) are strongly affected by deposition to the biosphere. Deposition processes are very sensitive to turbulence, temperature, relative humidity and soil moisture deficit and are expected to respond to global climate change, with implications for both air quality (e.g. human health) and ecosystem services (e.g. crop yields). In this PhD study, the global chemistry aerosol model UKCA (United Kingdom Chemistry Aerosol model) dry deposition scheme was thoroughly investigated. Some errors in the existing implementation of the current UKCA stomatal resistance and in-canopy aerodynamic resistance terms for O3 and NOw (NO2, PAN, PPAN, MPAN) were identified and corrected (WES scheme). These model corrections led to a decrease of the total annual dry deposition of -150 Tg(O3) yr-1 (-13%) which brings UKCA more in line with multi-model inter-comparison estimates. This was associated with a large increase of surface O3 concentration over land in the Northern Hemisphere (NH) with values up to 12 ppb (+50%) higher on annual average. Many studies have shown that O3 stomatal uptake by vegetation, which is the pathway leading to damage, accounts for 40-60% of total deposition on average. The remaining non-stomatal deposition flux is to external foliar surfaces, and soil. A more mechanistic non-stomatal dry deposition approach along with a scheme to simulate the effect of moisture on foliar surfaces on the stomatal transport (ZHG scheme) was introduced in UKCA to study the relative contributions of O3 flux occurring to stomatal and non-stomatal pathways at the global scale, and to explore the sensitivity of simulated surface O3 and O3 deposition flux. The ZHG scheme, led to significant changes in the O3 dry deposition velocity (Vd) (+40% in the North Hemisphere over boreal forests and -30% over tropical regions on annual average). The results of this study show that the ZHG scheme significantly changes the partitioning between stomatal and non-stomatal O3 flux. The non-stomatal fraction increased throughout the year and considerably during the cooler season and in spring (with maxima values by up to 60% for C3 grass and by up to 70% for needle leaf trees). The performance of both UKCA dry deposition schemes were compared with measurements, focussing on the diurnal and seasonal variations of the dry deposition velocity terms and the partitioning of O3 fluxes between stomatal and non-stomatal sinks. Overall, both UKCA dry deposition schemes capture the diurnal variations of Vd reasonably well. However, this study highlighted difficulties in comparing large grid (~280 x 390 km at mid-latitudes) averaged modelled values with site and vegetation specific characteristics of the measured exchange processes (~1 km2) and the driving meteorological variables. These differences in scale are a large source of uncertainty in the comparison of measured and modelled O3 Vd. Off-line simulation tests conducted on the non-stomatal deposition component with the ZHG scheme demonstrated the importance of modelling some key environmental and meteorological factors accurately (e.g. relative humidity, friction velocity, leaf area index). This was found to be crucial in order to improve O3 Vd model performance as well as improving the representation of specific vegetation properties. A comparison of the modelled global surface O3 concentration against observations both in the NH and SH revealed that the model performs well in the NH using both schemes, capturing the observed surface O3 cycle and the absolute values. The ZHG scheme led to a reduction of the annual bias (up to -13.5% on average) in the NH monitoring sites considered for this study. This is associated with a decrease in O3 deposition simulated with ZHG (as much as of -20% on annual average). By contrast, the seasonal cycle and absolute values of the observed surface O3 are not well reproduced by the model across the SH monitoring sites used in this study and a larger bias was found using the ZHG scheme (60% on average) compared to WES scheme (47% on average), as a consequence of an increase in O3 deposition (as much as of +20% on annual average) calculated with ZHG. A future climate integration for the 2090s using RCP 8.5 scenario was used to investigate the response of UKCA modelled O3 to climate change. The effect of climate change (by altering only the GHG concentrations predicted with RCP 8.5) on the dry deposition sink of O3 was addressed contrasting the two non-stomatal deposition parameterizations, and ignoring the changes in land-use and anthropogenic emissions. The study showed that O3 Vd over land declines from 2000 to 2100, and most strongly over vegetated areas (up to -24% over S. America, -17% over N. America and -10% over Europe). Climate change led to an increase of surface O3 concentration over land (by up to 20%). Whilst the two schemes behave similarly, and an increase in turbulence has been identified as the main driver, the decrease in land Vd is generally stronger in ZHG. This effect is more important over N. America and Eurasia where ZHG exhibits larger differences in deposition compared to WES as a result of changing climate. The increase in surface O3 over Arctic and Antarctic regions shows the effect that changes in O3 deposition might have on the long-range transport of O3. Finally, the influence of climate change on the partitioning of the O3 deposition flux was examined. This analysis revealed that more O3 is predicted to deposit through stomatal pathways with ZHG over N. America, C. Europe and E. Asia (up to +30%) compared to WES as a result of changing climate. Given that ZHG scheme captures the influence of meteorology and changing climate on surface O3 better than WES, it was concluded that modelled surface O3 using ZHG scheme showed a larger sensitivity to a changing climate than WES. These results imply potentially important effects of climate change on tropospheric O3, degrading air quality through the later decades of this century.
77

Scales of variability of atmospheric aerosols

Weigum, Natalie January 2014 (has links)
Aerosols have a significant effect on the global radiation budget through their interactions with radiation and clouds. However, estimates of their effect are the dominant source of uncertainty in current estimates of total anthropogenic effect on climate. A major cause of this uncertainty is the high degree of variability of aerosol properties and processes that affect their lifetime. Prediction of the aerosol effect on climate depends on the ability of three-dimensional numerical models to accurately estimate aerosol properties. However, a limitation of traditional grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid-boxes, which can lead to discrepancies between observations and aerosol models. This thesis uses a synthesis of aerosol observations, global climate model (GCM) data, and a new aerosol modelling technique implemented within a regional-scale model to quantify the important scales of aerosol variability and the extent to which different sub-grid scale processes contribute to discrepancies in aerosol modelling. Analysis of black carbon (BC) plumes from aircraft observations shows that BC plumes represent a large portion of total BC mass and typically exist on scales of 65{ 100 km. Comparison of observed plume scales to those simulated by GCMs at multiple resolutions show that GCMs overestimate the scales of along- ight-track variability by 64% at the highest resolution. Variability is shown to be greater near sources than in remote regions, indicating that models may benefit from higher resolutions in regions of high emissions. Additionally, GCMs at all resolutions show higher variability in the latitudinal direction than the longitudinal direction, suggesting that capturing latitudinal variability may result in greater improvements in aerosol modelling. This work additionally presents a novel technique to allow one to isolate the effect of aerosol variability from other sources of variability within the model. Processes most affected by neglecting aerosol sub-grid variability are gas-phase chemistry and aerosol uptake of water through the aerosol/gas equilibrium reactions. The inherent non-linearities in these processes result in large changes in aerosol parameters when aerosol and gaseous species are artificially mixed over large spatial scales. These changes in aerosol and gas concentrations are exaggerated by convective transport, which transports these altered concentrations to altitudes where their effect is more pronounced. Future aerosol model development should focus on accounting for the effect of sub-grid variability on these processes at global scales in order to improve model predictions of the aerosol effect on climate.
78

Aerosols in and above the Bornean rainforest

Robinson, Niall Hamilton January 2011 (has links)
Atmospheric aerosols affect climate directly by scattering and absorbing solar radiation, and indirectly by affecting the albedo and lifetime of clouds through their role as cloud condensation nuclei. Aerosol sources, and the processes that govern their evolution in the atmosphere are not well understood, making the aerosol effects a significant source of uncertainty in future climate predictions. The tropics experience a large solar flux meaning that any radiative forcing in this region is particularly important. Despite this, there is a paucity of data from the tropics, with the majority of previous studies performed in the northern mid-latitudes. The few in-situ studies of aerosol composition that have been performed are all in the continental settings of Amazonia or Africa. Until now the 'maritime continent' region of South East Asia has remained unstudied. Presented here are Aerosol Mass Spectrometer composition measurements from the Oxidant and Particulate Processes Above a South East Asian Rainforest project, performed from ground and airborne measurement platforms in and around the rainforest of Borneo, South-East Asia. Unlike the previous tropical studies, this allows for the characterisation of a region of mixed terrestrial and marine biogenic emissions. The region is also undergoing rapid land use change, with forest being converted for agriculture, particularly the cultivation of oil palms. This study also allows for the characterisation of a region that is beginning to undergo land use change, providing insight into emissions from different land use types, and providing a benchmark to measure the effects of land use change against in the future.Total sub-micron aerosol loadings were found to be lower than studies in the northern mid-latitudes, similar to previous tropical studies. However, aerosol composition was different to that observed in Amazonia, with much greater sulphate loadings in Borneo. A regional background of sulphate and highly oxidised organic aerosol was identified, with organic aerosol that is less oxidised originating inland. Aerosol confined to a shallow marine boundary layer upwind of Borneo is lofted higher into the troposphere as it advects across the island, with regional aerosol being removed and biogenic terrestrial aerosol added. The lofting of this aerosol is expected to extend its atmospheric lifetime and change its role in the Earth's radiative budget. A novel organic aerosol signal was identified which correlated with gas phase isoprene oxidation products, strongly suggesting that it was significant of isoprene SOA. Aerosol associated with this signal made up a substantial fraction of the organic aerosol loading. This opens up the opportunity for future studies to make isoprene SOA measurements using the Aerosol Mass Spectrometer in other studies. A substantial amount of the organic aerosol in Borneo was attributed to isoprene oxidation.
79

Études des variations décennales de la température de la moyenne atmosphère / Study of the decadal variations in the temperature of the middle atmosphere

Wing, Robin 21 February 2019 (has links)
L'atmosphère moyenne de la Terre est un laboratoire naturel pour les études de la dynamique géophysique des fluides et de l'optique pour la mesure des gaz. Les recherches dans cette région ont longtemps été limitées par le manque d'observations à long terme susceptibles de couvrir l'ensemble de la région, de la troposphère à la haute mésosphère et à la thermosphère inférieure. Les dernières décennies ont vu la construction de nombreux observatoires au sol et le lancement d'instruments par satellite dans le but de fournir les mesures nécessaires pour comprendre la chimie, la dynamique et les changements climatiques à long terme de l'atmosphère moyenne. La télédétection atmosphérique, tant au sol que dans l’espace, présente des avantages et des inconvénients évidents. Les premiers étant capables de fournir des mesures bien calibrées et à haute résolution sur un seul site et les derniers permettant une couverture globale au prix de la résolution et d'un certain degré de certitude lors de l'étalonnage. Pour ce travail, nous utilisons des mesures de température obtenues à l'aide d'une technique de télédétection au sol basée sur le lidar à diffusion de Rayleigh et nous effectuons des comparaisons systématiques avec les profils de température générés à l'aide de trois instruments de télédétection passif basés sur des satellites: Sondeur Micro-onde sur satellite Aura (MLS). Sondage de l'atmosphère par radiométrie des émissions à large bande (SABER) et surveillance mondiale de l'ozone par occultation d'étoiles (GOMOS).Ce manuscrit a trois résultats principaux: 1a) Résultats de plusieurs améliorations de l’algorithme de la température lidar, qui ont permis de corriger un bias froid sur les températures mésosphériques jusqu’à 20 K à 90 km. 1b) Meilleur accord entre les températures du lidar et les profils de température SABER et MLS entre 70 km et 90 km. 1c) Une validation croisée entre les températures d’un lidar de température de Rayleigh et d’un lidar d’ozone co-localisés, qui donne confiance en la stabilité de la technique du lidar et justifie l’utilisation de la température par lidar comme base de données de référence pour la validation par satellite. 2a) Présentation d’une comparaison décennale entre les températures lidar validées et les températures produites par SABER et MLS. 2b) Nous montrons un biais froid dans les mesures satellitaires par rapport au lidar (-6 K pour SABER et -17 K pour MLS) dans la région de stratopause, un biais chaud (6 K près de 60 km) dans la mésosphère d’été, et un biais structuré verticalement pour MLS (-4 à 4 K) qui couvre la moyenne atmosphère. 2c) Nous réduisons l'ampleur du biais en dècallant verticalement la hauteur de la stratopause satellite et constatons une amélioration de la comparaison de température lidar-satellite qui en résulte. Ce résultat a des implications importantes pour la notification des températures des satellites en fonction de la hauteur géopotentielle. 3a) La comparaison des profils de température lidar avec la nouvelle base de données de température GOMOS montre que les altitudes géométriques des satellites peuvent être mieux estimées par les techniques d'occultaion que par l'inférence des niveaux de pression à partir des données radiométriques 3b) de l'effet des marées sur les comparaisons de température entre lidar et satellite lorsque Le passage supérieur du satellite est décalé dans le temps par rapport à la mesure lidar et peut être de l'ordre de 2 à 4 K en fonction de la phase de l'heure solaire. / The Earth's middle atmosphere is a pristine natural laboratory for the study of geophysical fluid dynamics and optics in neutral gasses. Research in this region has long been limited by a lack of long-term observations which are capable of covering the entire region from the troposphere to the upper mesosphere and lower thermosphere. Past decades have seen the construction of many ground based observatories and launches of satellite based instruments in an effort to provide the measurements needed to understand the chemistry, dynamics, and long-term climactic changes in the middle atmosphere. Both ground-based and space-based atmospheric remote sensing have clear strengths as well as limitations; the former being able to provide high resolution, well calibrated measurements at a single site and the latter allowing for global coverage at the cost of resolution and some degree of certainty in calibration. For this work we are using temperature measurements produced from a Rayleigh-scatter lidar ground-based remote sensing technique and making systematic comparisons to temperature profiles produced from three passive scanning satellite-based remote sensing instruments: Microwave Limb Sounder on the Aura satellite (MLS), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), and Global Ozone Monitoring by Occultation of Stars (GOMOS).This manuscript has three main results: 1a) Results of several improvements to the lidar temperature algorithm resulting in a cooling of the mesospheric temperatures by up to 20 K at 90 km. 1b) Better agreement between the cooled lidar temperatures and temperature profiles from SABER and MLS between 70 km and 90 km. 1c) A cross-validation between temperatures from a co-located Rayleigh temperature lidar and ozone lidar which provides confidence in the stability of the lidar technique and justification for the use of lidar temperatures as a reference database for satellite validation. 2a) Presentation of a decadal comparison between the validated lidar temperatures and the temperatures produced by SABER and MLS. 2b) We show a cold bias in the satellite measurements with respect to the lidar (-6 K for SABER and -17 K for MLS) in the stratopause region, a warm bias (6 K near 60 km) in the summer mesosphere, and a vertically structured bias for MLS (-4 to 4 K) which spans the middle atmosphere. 2c) We reduce the magnitude of the bias by vertically shifting the height of the satellite stratopause and see an improvement in the resulting lidar-satellite temperature comparison. This result has important implications for the reporting of satellite temperatures as a function of geopotential height. 3a) Comparison of lidar temperature profiles with the newly created GOMOS temperature data base shows that satellite geometric altitudes can be better estimated by occultaion techniques than by inference of pressure levels from radiometric data 3b) The effect of tides on lidar to satellite temperature comparisons when the satellite overpass is temporally offset from the lidar measurement can be on the order of 2 to 4 K depending on the phase of the solar hour.
80

Vers une répartition améliorée des sources de méthane anthropique / Towards improved source apportionment of anthropogenic methane sources

Assan, Sabina 18 December 2017 (has links)
Le méthane a la deuxième plus grande contribution à au forçage radiatif global des gaz à effet de serre anthropiques. Après une période de stabilité, son taux de croissance atmosphérique a augmenté rapidement depuis 2007. Les émissions anthropiques de méthane ont un potentiel important d'atténuation ce qui encourage les efforts visant à réduire ses émissions conformément à l'accord de Paris. Toutefois, beaucoup d’incertitudes demeurent concernant la contribution de différentes sources de méthane, les processus et les estimations des émissions, même à une échelle locale ; ce qui entrave la mise en œuvre efficace des stratégies d'atténuation du méthane. Jusqu’à maintenant, de nombreuses études ont été réalisées pour mesurer les flux globaux de méthane, la répartition et la caractérisation des sources de méthane par région mais les processus doivent encore être mieux déterminés.Cette thèse présente et applique des méthodes pour caractériser les différentes sources de CH4 présentes dans les mesures de l'air ambiant des sites industriels et développe des outils ciblés pour répondre à cette question. Le premier chapitre traite des améliorations apportées à un instrument CRDS fréquemment déployé pour les mesures de CH4 et de δ13CH4. Nous proposons un schéma d'étalonnage pour corriger les interférences C2H6 sur δ13CH4 et permettre des mesures fiables de C2H6. Les résultats de ces travaux sont ensuite utilisés pour explorer la valeur ajoutée sur les données de la mise en œuvre de cette méthode sur une station de compresseur de gaz naturel, où une forte corrélation de C2H6 et de CH4 est normalement attendue. Le deuxième chapitre poursuit la caractérisation des sources de CH4 sur le même site mais porte plus sur l'application et la comparaison des différentes méthodes de répartition des sources. Les contributions des sources de CH4 et composés organiques volatils (COV) sont explorées selon la méthode de l'analyse isotopique, de l'analyse des séries temporelles multi-espèces à l’aide de modèles source-récepteur (PCA et PMF), des données météorologiques et des échantillons directs de gaz naturel. Le troisième chapitre présente une utilisation des méthodes de répartition des sources de CH4 sur les mesures ambiantes des sources de CH4 biogénique dans la région Ile de France et aide ainsi à compléter l'étude des sources anthropiques de CH4 les plus pertinentes.Cette thèse identifie et documente les signatures en δ13CH4 de différentes sources de CH4 sur des environnements contrastés à proximité de fermes d’élevage intensif, de stations d’épuration des eaux usées, de décharges d’enfouissement des déchets ou encore de sites de compression du gaz naturel, et étudie leur variabilité spatiale et temporelle pour faciliter la contrainte des émissions. Les résultats obtenus suggèrent que l’identification de différentes sources biogéniques et thermogéniques avec le δ13CH4 est robuste et adaptable à une grande diversité d’environnements. L'utilisation d'une combinaison d'outils est idéale pour étudier la variabilité à court terme et long terme. Cette thèse présente différentes utilisations de ces nouveaux outils pour diriger les investigations des émissions anthropiques de méthane et sont la base pour de futurs travaux dans ce domaine. / Methane has the second largest contribution to global radiative forcing impact of anthropogenic greenhouse gasses. Since 2007 its atmospheric growth rate, after a period of stability, has again been rising rapidly. Anthropogenic methane emissions hold a large mitigation potential, promoting efforts to curb emissions in accordance with the Paris Agreement. However, the considerable uncertainties regarding methane contributors, drivers and emission estimates even at local scales, hinder the effective implementation of methane mitigation strategies. While many approaches have been established to measure total methane fluxes, the partitioning and characterisation of methane sources by region and processes still need to be better constrained.This thesis presents practical methods for characterising different CH4 sources in ambient air measurements at industrial sites, as well as developing more targeted tools. The first chapter focuses on improvements to a CRDS instrument that is commonly deployed for CH4 and δ13CH4 field measurements. We propose a calibration scheme to correct for C2H6 interference on δ13CH4, and enable robust C2H6 measurements. The results of this work are then used to explore the added value gained when implemented on data from a natural gas compressor station, a site where high correlation of C2H6 and CH4 is expected. The second chapter continues the investigation of CH4 sources at the same site; with focus shifted towards the application and comparison of different source apportionment methods from time series analysis based on measurements of multiple species, some co-emitted with CH4. Here the CH4 and Volatile Organic Compounds (VOC) source contributions are explored through the use of isotopic analysis, receptor model analysis (PCA and PMF), metrological data and direct samples of natural gas. The third chapter applies a selection of the developed CH4 source apportionment methods to ambient measurements at biogenic CH4 sites in the Ile de France region and helps complete the survey of the most relevant anthropogenic CH4 sources.This thesis identifies and reports local δ13CH4 source signatures for livestock, wastewater, landfill and natural gas and studies their spatial and temporal variability to aid the constraint of emission inventories. Our findings suggest that source apportionment from δ13CH4 is robust, and adaptable to the majority of sites. Using a combination of tools is ideal for more specific source determination and for an understanding of long and short term variability. The work presented in this thesis offers example applications of these new tools to directed investigations of anthropogenic methane emissions and lays the foundation for future work in this field.

Page generated in 0.0386 seconds