• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 87
  • 15
  • 3
  • Tagged with
  • 342
  • 58
  • 33
  • 20
  • 16
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Speciation analysis of arsenic and selenium by HPLC and mass spectrometry

Fitzpatrick, Sarah Anne January 2003 (has links)
New methodologies have been developed for the determination of arsenic and selenium species in a variety of environmentally important matrices. A simple liquid chromatographic separation technique based upon mini-column technology was developed to obtain a simultaneous, fast, efficient and reliable separation of relatively toxic from relatively non-toxic arsenic and selenium species. The relatively toxic arsenic and selenium species studied were inorganic Asv, AsIII, SeVI and SeIV. The relatively non-toxic species of arsenic and selenium studied were AsBet, DMA and Se Met. Optimum conditions were found to be the use of a Hamilton PRP X100 12-20 µm anion-exchange resin with column dimensions of 100 x 3 mm. The mobile phase utilized a 10 mM K2S04 solution at pH 10.2 with a flow rate of 1 ml minˉ¹ and a sample injection loop of 100 µ1. Total analysis time was under 7 minutes with limits of detection in the range of 2.0 - 10 µg kgˉ¹ for arsenic and selenium species, respectively. Work was undertaken, using HPLC-ICP-MS instrumentation, as part of a feasibility study, into the production and certification of six new reference materials; these being analyzed for the species of arsenic, in chicken, fish, rice and soil samples, and selenium, in wheat and yeast samples. Enzyme extraction techniques were used throughout, except for soil where a microwave H3P04 extraction was used. Efficiencies were in the range 90-100%. The results obtained provided speciation information as well as total elemental concentrations with no operationally defined limits. Speciation analysis requires that the endogenous species are extracted without modification of their chemical form or disturbance to the equilibrium existing between the various species present. Work was undertaken to identify and quantify the selenium species present in two samples of novel, previously unstudied, bio-natured nutrients, these nutrients being: i) a selenized yeast from a new process and: ii) a probiotic bacteria-based dried milk sample (Biogurt®). Specific interest was directed towards enzyme, MeOH and KOH and TMAH extraction efficiencies together with retention of species information. Selenium speciation was performed using ion-exchange HPLC-ICP-MS. It was found that the selenium content, in the form of SeMet, was adequately extracted from the yeast (Pharma Nord) that was used for method validation using protease, which yielding 90% of the total selenium. However, the determination of selenium and selenium species in the bionatured nutrients proved to be quite problematic. Methods that avoided species conversion with the highest extraction efficiencies were found to be: i) the use of protease for the yeast sample (19%) and; ii) the use of 0.01 M HCl for the Biogurt® (71%). Information obtained from speciation of these samples by anion and cation-exchange HPLC-ICP-MS was limited due to the low extraction efficiencies of any procedure undertaken for the samples, by the retention of the analyte on-column and by the lack of standards available for matching of retention times. HPLC-ICP-MS has proved an efficient tool for the identification and determination of arsenic and selenium species providing detection limits at µg kgˉ¹ levels. However, a major concern with this instrumentation is the unambiguous assignment of peaks which relies on the chromatographic purity of the signal and the availability of standards. Anion-exchange chromatography employing Hamilton PRP X100 resin with NH4HC03 (10 mM, pH 10.2 for arsenic and 10-50 mM, pH 5 for selenium species) with methanol (10 %, v/v) as the mobile phase allowed separation of the arsenic and selenium species investigated under conditions that were compatible for both HPLC-ICP-MS and HPLC-ESMS. Molecular ions and structural fragmentation patterns of these by tandem MS have facilitated the identification of chromatographic peaks obtained using HPLC-ICP-MS. In the analysis of marine algae, arsenosugars were the major species found, and in yeast the dominant species was found to be selenomethionine.
142

Abiotic stress signalling in the fucus embryo

Coelho, Susana January 2002 (has links)
Fucoid algae live in the intertidal region where they experience daily fluctuations in light and external osmotic environment. High light, especially in combination with ultraviolet (UV) radiation and hyper-osmotic stress affected the cellular physiology of Fucus embryos. Two photoinhibition responses were recognised. Firstly, a rapid decline of the photosystem II (PSII) efficiency, linked with the operation of the xanthophyl cycle, followed by a slower decline correlated with reactive oxygen species (ROS) production. As a result of enhanced ROS production, a slower repair of the PSII efficiency was observed, particularly with increased UV-B doses. Development of the embryos was transiently affected by UV-B. The cellular signal transduction pathway during hyper-osmotic stress was investigated. ROS production in response to hyperosmotic stress comprised two distinct components. The first ROS component coincided closely with the origin of a Ca2+ wave in the peripheral cytosol at the growing cell apex, had an extracellular origin, and was necessary for the Ca2+ wave. Patch clamp experiments showed that a non-selective cation channel was stimulated by H2O2, and may underlie the initial cytosolic Ca2+ elevation. The spatio-temporal pattern of the Ca2+ wave was thus determined by peripheral ROS production. The second, later ROS component localised to the mitochondria and was a direct consequence of the Ca2+ wave. The first, but not the second component was required for short-term adaptation to osmotic stress, probably through the activity of cell wall bromoperoxidases. Mitogen-activated protein kinases may be involved in the hyper-osmotic stress response downstream or independently of the mitochondrial ROS production.
143

Mechanisms of Zn2+- and excitotoxin-induced oligodendrocyte progenitor cell injury

Kelland, Eve Emily January 2003 (has links)
1. The present study examined whether primary cultured rat A2B5+ cerebrocortical oligodendrocyte progenitor cells (OPC) were susceptible to Zn2+- and excitotoxin-induced cell death. 2. Initial pharmacological studies demonstrated the selective ionotropic glutamate receptor agonists' kainate and (S)-5-Iodowillardiine induced OPC death after 24-hour exposure. (S)-AMPA and L-glutamate only induced cell death in the presence of 100muM cyclothiazide (a selective AMPA receptor desensitisation blocker). The selective AMPA- receptor antagonists, GYKI 52466 and Evans' Blue, attenuated 300muM kainate-induced toxicity and therefore suggested OPC excitotoxic insult was via AMPA receptor activation. 3. Metabotropic glutamate receptor (mGluR) involvement was also established as (S)-DBPG (100muM), a selective group I mGluR agonist, afforded significant (p < 0.05) protection against 300muM kainate-induced toxicity. The selective mGIuR antagonist (S)-MCPG reversed the effects of (S)-DHPG protection. 4. OPC death was partially prevented by the broad-spectrum caspase inhibitor Z-VAD-fmk (100muM) at 6-hour and 24-hour paradigms. Hoechst 33342 staining revealed the presence of pyknotic nuclei following 6-hour kainate (300muM) exposure and Western Blotting using anti-caspase-3 antibody and anti-a-fodrin antibody indicated potential activation of the apoptotic executioner caspase-3. 300muM Kainate-induced OPC death did not appear to result in the activation of reactive oxygen species (ROS). 5. Zn2+ exposure over 24-hours resulted in OPC death (pECso 4.1+0.1). 100muM Zn2+- induced OPC death was not potentiated by 300muM kainate and Evans Blue afforded no protection. Nicardipine also failed to influence OPC viability. The lack of effect of kainate and nicardipine was confirmed by 65Zn2+ uptake studies. 6. 100muM and 300muM Zn2+-induced OPC death did not appear to result in activation of ROS. Hoechst 33342 staining revealed the presence of chromatin condensation with 300muM Zn2 (6-hour exposure). 100|muM and 300muM Zn2+ (24-hour exposure) was not influenced by Z-VAD-fmk or PD 150606. 7. Zn2+-induced OPC toxicity resulted in significant ATP depletion 6-hours following 300muM Zn2+ exposure (p < 0.05) and was attenuated in the presence of 5mM pyruvate. These data therefore suggest the mechanisms of Zn2+ toxicity may involve disruption of the glycolytic cascade.
144

Interpretation of the Caenorhabditis elegans genome sequence data through gene expression patterns

Sharma-Oates, Archana January 2003 (has links)
The nematode Caenorhabditis elegans has been studied extensively as a means of understanding development and cellular processes and was the first multicellular organism to have a sequenced genome. A number of C. elegans gene expression patterns have been characterized, using several different experimental approaches, thereby providing a link between the nucleic acid sequence of a gene and the temporal and spatial nature of its expression. A systematic collation and analysis of C. elegans gene expression pattern data revealed a high degree of agreement in the results obtained using the different experimental approaches. During this analysis a group of genes was identified that expressed specifically in one particular cell type, the excretory cell. To develop a strategy to identify c/s-acting regulatory elements responsible for the control of cell type-specific expression, the DNA sequences of the potentially co-regulated excretory cell-expressing genes were analysed using two software packages, MEME and SPEXS. The MEME output contained many DNA motifs but their sequence simplicity suggested that they were unlikely to be genuine regulatory elements. In contrast, the output from SPEXS identified a vast number of more complex motifs. However because SPEXS detects motifs simply based on sequence, without considering biological characteristics of cw-acting elements, no priority was assigned to the identified elements. Therefore a scoring strategy was devised that incorporated different weightings such that motifs occurring with high frequency within 1 kb upstream from the translational start, and with high sequence complexity, were assigned a higher score. To test the effectiveness of the scoring strategy when applied to the SPEXS output, a C. elegans muscle data set was analysed which was known to contain a previously characterized cis-acting element. The element in question was identified suggesting that the scoring strategy worked well. When the strategy was applied to excretory cell data set the highest scoring motif, and therefore most likely candidate cis-acting element, was the motif TTACCGAA. This motif was also detected in test sets containing excretory cell-expressing genes and a data set containing C. briggsae orthologues of C. elegans genes. These results suggest that the scoring strategy is an effective approach to identify c/s-acting elements and the motif TTACCGAA is potentially such an element which mediates excretory cell expression in C. elegans.
145

Quantitative analysis of amphiphilic properties of membrane interactive proteins

Daman, O. A. January 2003 (has links)
Integral membrane proteins often possess lipophilic a-helical regions of approximately 21 amino acid residues that are able to traverse the bilayer. These may either be amphiphilic or predominantly hydrophobic (such as those found in the photoreaction centres). Such helices are distinguished by low charge densities and large mean hydrophobicities. Several hydrophobicity measures (scales) and algorithms for identification of these segments have been developed. Here, a survey of currently available hydrophobicity scales and prediction techniques has been conducted and a brief description of each of the techniques is reported. The hydrophobic moment methodology, even after twenty years of existence, appears to be the most widely used technique for amphiphilic helical structure prediction. The reliability of this methodology at predicting structure and function relationship in membrane proteins was tested using proteins and peptides from different but known classes. In predicting structure, the hydrophobic moment appears to make predictions consistent with those from other researchers using other prediction techniques based on other alternative properties. However, the predictions for function were not consistent with the role of proteins in some cases. Scatterplots of mean hydrophobicity and mean hydrophobic moment for different window sizes revealed that there is a negative association between the two variates and, that mean hydrophobic moment decreases as window size increases. It was also deduced from 99% bootstrap confidence intervals for the correlation coefficients, that short window sizes (7-15) are more discriminative than tong ones (16-20). Angular frequencies between 95° and 107 0 were also investigated for all window sizes and it was observed that different window lengths have different optimum angular frequencies. Variation in both window size and angular frequency were seen to affect prediction with window sizes 7-15 residues giving better prediction. A data set of 403 transmembrane segments was assembled. The compositionat and distributional properties of constituent amino acids were investigated. It was observed that transmembrane segments tend to posses high occurrence of charged amino acid residues at the interface, large planar molecules just within the membrane interior and smalt hydrophobic residues in the central region. When the amino acid residue compositions of the boundaries of transmembrane a-helices were compared statisticatly, it was observed that at the 5% significant level there is no difference between the boundaries within, or between classes of transmembrane spans. It was also observed that the assumed length of twenty-one residues is, on average, reasonable for uncleaved sequences but that twenty-two may be appropriate for stop transfer sequences. When the presence of a hydrophobicity gradient in transmembrane a-hetices was examined, 25% of the sequences in the data set showed the distribution of hydrophobicity which is observed in typical transmembrane spans (tow-high-low). However, 13% showed the distribution of hydrophobicity which is similar to that seen in tilted peptides. It would appear that some transmembrane a-helices do have a hydrophobicity gradient, but this has not been related to any biological role. A new measure of amphiphilicity, which takes into account the third dimension of a helix, was also developed and compared to the conventional hydrophobic moment using bootstrap and regression modelling with a categoricat predictor. From the 95% bootstrap confidence intervals for estimates of model parameters, it was concluded though that there is no difference between the two measures, implying that the loss of spatial information in the conventional hydrophobic moment model, is not significant.
146

Cell biological studies of the transcription elongation factor TFIIS

Smith, Abigail J. January 2001 (has links)
No description available.
147

Protein kinase D3 signaling in the regulation of liver metabolism / Proteinkinase D3 Signalwirkung in der Regulation des Leberstoffwechsels

Mayer, Alexander E. January 2021 (has links) (PDF)
The liver plays a pivotal role in maintaining energy homeostasis. Hepatic carbohydrate and lipid metabolism are tightly regulated in order to adapt quickly to changes in nutrient availability. Postprandially, the liver lowers the blood glucose levels and stores nutrients in form of glycogen and triglycerides (TG). In contrast, upon fasting, the liver provides glucose, TG, and ketone bodies. However, obesity resulting from a discrepancy in food intake and energy expenditure leads to abnormal fat accumulation in the liver, which is associated with the development of hepatic insulin resistance, non-alcoholic fatty liver disease, and diabetes. In this context, hepatic insulin resistance is directly linked to the accumulation of diacylglycerol (DAG) in the liver. Besides being an intermediate product of TG synthesis, DAG serves as second messenger in response to G-protein coupled receptor signaling. Protein kinase D (PKD) family members are DAG effectors that integrate multiple metabolic inputs. However, the impact of PKD signaling on liver physiology has not been studied so far. In this thesis, PKD3 was identified as the predominantly expressed isoform in liver. Stimulation of primary hepatocytes with DAG as well as high-fat diet (HFD) feeding of mice led to an activation of PKD3, indicating its relevance during obesity. HFD-fed mice lacking PKD3 specifically in hepatocytes displayed significantly improved glucose tolerance and insulin sensitivity. However, at the same time, hepatic deletion of PKD3 in mice resulted in elevated liver weight as a consequence of increased hepatic lipid accumulation. Lack of PKD3 in hepatocytes promoted sterol regulatory element-binding protein (SREBP)-mediated de novo lipogenesis in vitro and in vivo, and thus increased hepatic triglyceride and cholesterol content. Furthermore, PKD3 suppressed the activation of SREBP by impairing the activity of the insulin effectors protein kinase B (AKT) and mechanistic target of rapamycin complexes (mTORC) 1 and 2. In contrast, liver-specific overexpression of constitutive active PKD3 promoted glucose intolerance and insulin resistance. Taken together, lack of PKD3 improves hepatic insulin sensitivity but promotes hepatic lipid accumulation. For this reason, manipulating PKD3 signaling might be a valid strategy to improve hepatic lipid content or insulin sensitivity. However, the exact molecular mechanism by which PKD3 regulates hepatocytes metabolism remains unclear. Unbiased proteomic approaches were performed in order to identify PKD3 phosphorylation targets. In this process, numerous potential targets of PKD3 were detected, which are implicated in different aspects of cellular metabolism. Among other hits, phenylalanine hydroxylase (PAH) was identified as a target of PKD3 in hepatocytes. PAH is the enzyme that is responsible for the conversion of phenylalanine to tyrosine. In fact, manipulation of PKD3 activity using genetic tools confirmed that PKD3 promotes PAH-dependent conversion of phenylalanine to tyrosine. Therefore, the data in this thesis suggests that PKD3 coordinates lipid and amino acid metabolism in the liver and contributes to the development of hepatic dysfunction. / Die Leber spielt eine zentrale Rolle bei der Aufrechterhaltung der Energiehomöostase. Der hepatische Kohlenhydrat- und Fettstoffwechsel ist stark reguliert, um sich schnell an Veränderungen in der Nährstoffverfügbarkeit anzupassen. Die Leber senkt postprandial den Blutzuckerspiegel und speichert Nährstoffe in Form von Glykogen und Triglyzeriden (TG). Im Gegensatz dazu stellt die Leber beim Fasten Glukose, TG und Ketonkörper bereit. Fettleibigkeit, welche aus einer Diskrepanz zwischen Nahrungsaufnahme und Energieaufwand resultiert, führt allerdings zu einer abnormalen Fettansammlung in der Leber, die mit der Entwicklung von Leberinsulinresistenz, nicht-alkoholischen Fettlebererkrankungen und Diabetes einhergeht. Hepatische Insulinresistenz steht dabei in direktem Zusammenhang mit der Akkumulation von Diacylglycerol (DAG) in der Leber. DAG ist nicht nur ein Zwischenprodukt der TG-Synthese, sondern dient auch als sekundärer Messenger im G-Protein-gekoppelten Rezeptor-Signalweg. Die Mitglieder der Proteinkinase D (PKD)-Familie sind DAG-Effektoren, die vielfache metabolische Inputs integrieren. Jedoch wurden die Auswirkungen der PKD-Signalwirkung auf die Leberphysiologie bisher nicht untersucht. Im Rahmen dieser Thesis wurde PKD3 als die in der Leber überwiegend exprimierte Isoform identifiziert. Die Stimulation von primären Hepatozyten mit DAG sowie die Fütterung von Mäusen mit fettreicher Nahrung (HFD) führte zu einer Aktivierung von PKD3, was auf eine Relevanz von PKD3 bei Fettleibigkeit hinweist. Mäusen, welchen PKD3 spezifisch in Hepatozyten fehlte und mit HFD gefüttert wurden, zeigten eine deutlich verbesserte Glukosetoleranz und Insulinsensitivität. Gleichzeitig führte jedoch die hepatische Deletion von PKD3 bei Mäusen zu einem erhöhten Lebergewicht in Folge einer erhöhten Lipidakkumulation in der Leber. Das Fehlen von PKD3 in Hepatozyten förderte die Sterol Regulatory Element-Binding Protein (SREBP)-vermittelte de novo Lipogenese in vitro und in vivo und erhöhte damit den Gehalt an Triglyceriden und Cholesterol in der Leber. Darüber hinaus supprimierte PKD3 die Aktivierung von SREBP, indem es die Aktivität der Insulin-Effektoren Proteinkinase B (AKT) und mechanistisches Ziel von Rapamycin- Komplexen (mTORC) 1 und 2 verminderte. Im Gegensatz dazu förderte die leberspezifische Überexpression von konstitutiv aktiver PKD3 die Glukoseintoleranz und Insulinresistenz. Zusammenfassend verbessert der Mangel an PKD3 die hepatische Insulinempfindlichkeit, aber fördert gleichzeitig die Akkumulation von Lipiden in der Leber. Aus diesem Grund könnte das Eingreifen in den PKD3-Signalweg eine gute Strategie zur Verbesserung des hepatischen Lipidgehalts oder der Insulinempfindlichkeit sein. Allerdings bleibt der genaue molekulare Mechanismus, mit dem PKD3 den Stoffwechsel von Hepatozyten reguliert, unklar. Es wurden unvoreingenommene proteomische Ansätze durchgeführt, um PKD3- Phosphorylierungsziele zu identifizieren. In diesem Prozess wurden zahlreiche potenzielle Ziele von PKD3 entdeckt, welche in den verschiedensten Aspekten des Zellstoffwechsels involviert sind. Unter anderem wurde Phenylalaninhydroxylase (PAH) als Ziel von PKD3 in Hepatozyten identifiziert. PAH ist das Enzym, welches für die Umwandlung von Phenylalanin in Tyrosin verantwortlich ist. Tatsächlich bestätigte die Manipulation der PKD3-Aktivität mit Hilfe von genetischen Werkzeugen, dass PKD3 die PAH-abhängige Umwandlung von Phenylalanin in Tyrosin fördert. Deswegen legen die Daten in dieser Arbeit nahe, dass PKD3 den Lipid- und Aminosäurestoffwechsel in der Leber koordiniert und zur Entwicklung von Leber- Dysfunktion beiträgt.
148

Die Rolle präsynaptischer Proteine Aktiver Zonen bei konditionierten Lernprozessen / The role of presynaptic active zone proteins in conditioned learning behaviour

Jungbauer [geb. Ulzhöfer], Sandra Gabi January 2018 (has links) (PDF)
Synaptische Plastizität wird als Grundlage für Lern- und Gedächtnisprozesse in unserem Gehirn angesehen. Aktive Zonen (AZ) und ihre spezifischen Proteine modulieren diesen Prozess und bahnen essentielle Vorgänge der synaptischen Transmission. In dieser Arbeit wurden drei zentrale Proteine Aktiver Zonen - Bruchpilot, RIM (Rab3 interacting molecule) und Fife - untersucht und ihre Rolle bei konditionierten Lernprozessen in Drosophila melanogaster Larven geprüft. Hierzu wurde das etablierte Paradigma des larvalen appetitiven olfaktorischen Lernens genutzt, bei dem eine Gruppe von Larven lernt, einen Duft mit einem gustatorischen Verstärker zu koppeln. Durch die vielfältigen genetischen Manipulationsmöglichkeiten des Modellorganismus war es möglich, die Funktion der Proteine bei assoziativen Lernvorgängen selektiv zu betrachten. Bruchpilot wird für den funktionellen Aufbau Aktiver Zonen in Drosophila benötigt und ist wichtig für die Akkumulation von Calcium-Kanälen in der Nähe von AZ. Durch gentechnische Veränderungen dieses Proteins ließ sich jedoch keine Beeinträchtigung im olfaktorischen Lernverhalten von Drosophila Larven beobachten. RIM fungiert durch seine Interaktionsdomänen als Bindeglied zwischen verschiedensten Effektoren und hat Einfluss auf synaptische Plastizität. Es wurde gezeigt, dass eine Punktmutation in der C2A-Domäne von RIM beim Menschen gleichzeitig zur Retinadegeneration und zu einem gesteigert verbalen IQ (Intelligenzquotient) führt. Eine durch die hohe Homologie vergleichbare Mutation im Drosophila-Genom resultierte nicht in einem veränderten Phänotyp im olfaktorischen Lernen. Fife ist ein Protein, das für eine funktionsfähige Architektur von AZ und damit u.a. für den reibungslosen Vesikelverkehr zuständig ist. Es zeigte sich, dass dieses Protein auch synaptische Plastizität und Lernvorgänge beeinflusst. Die Ergebnisse der vorliegenden Arbeit sind ein Beitrag, um die Zusammenhänge der synaptischen Plastizität und die Funktion Aktiver Zonen Proteine besser begreifen zu können. Hervorzuheben dabei ist, dass die Bruchpilot- und RIM-Mutanten-Larven keinen veränderten Phänotyp, bzw. bei Fife nur teilweise einen eingeschränkten Phänotyp im olfaktorischen larvalen Lernen im Vergleich zu den Wildtyp-Kontrollen zeigten. Gleichwohl man früher schon signifikante strukturelle Veränderungen an Aktiven Zonen dieser Mutanten an der neuromuskulären Endplatte und auch Effekte auf das Verhalten in adulten Drosophila gefunden hat. Es wird entscheidend sein, den Zusammenhang zwischen Struktur und Funktion Aktiver Zonen Proteine weiter zu konkretisieren. / Synaptic plasticity is considered to be the basis for learning and memory in our brain. Active zones (AZ) and its proteins orchestrate this process and are crucial to synaptic transmission. This work focused on three essential AZ proteins - Bruchpilot, RIM (Rab3 interacting molecule) and Fife- and their role in conditioned learning behaviour in Drosophila melanogaster larvae. To do so the well-established appetitive olfactory learning paradigm was used, in which a group of larvae is trained to learn that a specific odour is linked to a gustatory reinforcer. Due to the various genetic possibilities of Drosophila larvae it was possible to specifically study the function of each protein in associative learning behaviour. Bruchpilot is important for AZ structure in Drosophila and the accumulation of calcium channels in close proximity to active zones. Genetic manipulation of this protein did not impair olfactory learning in Drosophila larvae. Through its various interaction domains RIM connects with different molecular effectors and modulates synaptic plasticity. In Humans a point mutation in the C2A-domain of the protein leads to cone rod dystrophy and an elevated verbal IQ at the same time. A similar mutation in the Drosophila genome, thanks to the high genetic homologies, did not result in an altered phenotype. Fife is responsible for normal AZ architecture and also for efficient vesicle trafficking. It was shown that this protein modulates synaptic plasticity and learning processes. The results of this work contribute to a better understanding of synaptic plasticity and the function of active zone proteins. I would like to point out that Bruchpilot and RIM mutants did not show modified phenotypes in appetitive olfactory learning whereas Fife mutants were partially impaired in the tested paradigm compared to control groups. Although in previous works those mutants were found to cause structural changes at active zones in neuromuscular junctions and to affect learning behaviour in Drosophila adults. In future studies it will be crucial to determine the particular task and to specify the structure to function relationship of each AZ protein.
149

Processing of behaviorally relevant stimuli at different levels in the bee brain / Die Verarbeitung verhaltensrelevanter Stimuli auf unterschiedlichen Ebenen im Bienengehirn

Schmalz, Fabian Dominik January 2023 (has links) (PDF)
The behavior of honeybees and bumblebees relies on a constant sensory integration of abiotic or biotic stimuli. As eusocial insects, a sophisticated intraspecific communication as well as the processing of multisensory cues during foraging is of utter importance. To tackle the arising challenges, both honeybees and bumblebees have evolved a sophisticated olfactory and visual processing system. In both organisms, olfactory reception starts at the antennae, where olfactory sensilla cover the antennal surface in a sex-specific manner. These sensilla house olfactory receptor neurons (ORN) that express olfactory receptors. ORNs send their axons via four tracts to the antennal lobe (AL), the prime olfactory processing center in the bee brain. Here, ORNs specifically innervate spheroidal structures, so-called glomeruli, in which they form synapses with local interneurons and projection neurons (PN). PNs subsequently project the olfactory information via two distinct tracts, the medial and the lateral antennal-lobe tract, to the mushroom body (MB), the main center of sensory integration and memory formation. In the honeybee calyx, the sensory input region of the MB, PNs synapse on Kenyon cells (KC), the principal neuron type of the MB. Olfactory PNs mainly innervate the lip and basal ring layer of the calyx. In addition, the basal ring receives input from visual PNs, making it the first site of integration of visual and olfactory information. Visual PNs, carrying sensory information from the optic lobes, send their terminals not only to the to the basal ring compartment but also to the collar of the calyx. Receiving olfactory or visual input, KCs send their axons along the MB peduncle and terminate in the main output regions of the MB, the medial and the vertical lobe (VL) in a layer-specific manner. In the MB lobes, KCs synapse onto mushroom body output neurons (MBON). In so far barely understood processes, multimodal information is integrated by the MBONs and then relayed further into the protocerebral lobes, the contralateral brain hemisphere, or the central brain among others. This dissertation comprises a dichotomous structure that (i) aims to gain more insight into the olfactory processing in bumblebees and (ii) sets out to broaden our understanding of visual processing in honeybee MBONs. The first manuscript examines the olfactory processing of Bombus terrestris and specifically investigates sex-specific differences. We used behavioral (absolute conditioning) and electrophysiological approaches to elaborate the processing of ecologically relevant odors (components of plant odors and pheromones) at three distinct levels, in the periphery, in the AL and during olfactory conditioning. We found both sexes to form robust memories after absolute conditioning and to generalize towards the carbon chain length of the presented odors. On the contrary, electroantennographic (EAG) activity showed distinct stimulus and sex-specific activity, e.g. reduced activity towards citronellol in drones. Interestingly, extracellular multi-unit recordings in the AL confirmed stimulus and sex-specific differences in olfactory processing, but did not reflect the differences previously found in the EAG. Here, farnesol and 2,3-dihydrofarnesol, components of sex-specific pheromones, show a distinct representation, especially in workers, corroborating the results of a previous study. This explicitly different representation suggests that the peripheral stimulus representation is an imperfect indication for neuronal representation in high-order neuropils and ecological importance of a specific odor. The second manuscript investigates MBONs in honeybees to gain more insights into visual processing in the VL. Honeybee MBONs can be categorized into visually responsive, olfactory responsive and multimodal. To clarify which visual features are represented at this high-order integration center, we used extracellular multi-unit recordings in combination with visual and olfactory stimulation. We show for the first time that information about brightness and wavelength is preserved in the VL. Furthermore, we defined three specific classes of visual MBONs that distinctly encode the intensity, identity or simply the onset of a stimulus. The identity-subgroup exhibits a specific tuning towards UV light. These results support the view of the MB as the center of multimodal integration that categorizes sensory input and subsequently channels this information into specific MBON populations. Finally, I discuss differences between the peripheral representations of stimuli and their distinct processing in high-order neuropils. The unique activity of farnesol in manuscript 1 or the representation of UV light in manuscript 2 suggest that the peripheral representation of a stimulus is insufficient as a sole indicator for its neural activity in subsequent neuropils or its putative behavioral importance. In addition, I discuss the influence of hard-wired concepts or plasticity induced changes in the sensory pathways on the processing of such key stimuli in the peripheral reception as well as in high-order centers like the AL or the MB. The MB as the center of multisensory integration has been broadly examined for its olfactory processing capabilities and receives increasing interest about its visual coding properties. To further unravel its role of sensory integration and to include neglected modalities, future studies need to combine additional approaches and gain more insights on the multimodal aspects in both the input and output region. / Honigbienen und Hummeln sind aufgrund ihrer Lebensweise auf die ständige Verarbeitung sensorischer Eindrücke abiotischen und biotischen Ursprungs angewiesen. Als eusoziale Insekten ist hierbei für beide Arten die Wahrnehmung innerartlicher Kommunikation wie auch die Verarbeitung multisensorischer Einflüsse während der Nahrungssuche von essenzieller Bedeutung. Um die daraus resultierenden vielfältigen Herausforderungen erfolgreich bewältigen zu können, verfügen Honigbienen und Hummeln über eine fortschrittliche Verarbeitung olfaktorischer und visueller Reize. In beiden Arten beginnt die Geruchsrezeption an den Antennen, welche geschlechtsspezifisch von zahlreichen olfaktorischen Sensillen besetzt sind. Diese beinhalten olfaktorische Rezeptorneurone (ORN), in welchen die Expression der Geruchsrezeptoren stattfindet. Axone der ORNs laufen dabei gebündelt über vier verschiedene Trakte in den Antennallobus (AL), das erste olfaktorische Verarbeitungszentrum im Bienengehirn. Im AL verschalten ORNs mit lokalen Interneuronen und Projektionsneuronen (PN) in kugelförmigen Strukturen, den sogenannten Glomeruli. PNs leiten die olfaktorische Information daraufhin über zwei charakteristische Trakte, den medialen und lateralen Antennallobustrakt, in den Pilzkörper (MB), das Verarbeitungszentrum für die Integration sensorischer Eindrücke und Gedächtnisbildung. Im Calyx der Honigbiene, der sensorischen Eingangsregion des MB, bilden die Endköpfchen der PNs synaptische Verbindungen mit Kenyonzellen (KC), den primären Nervenzellen im MB. Die Innervation des Calyx durch die PNs ist dabei spezifisch in drei verschiedenen Zonen organisiert, nämlich in Lippe, Hals und basalen Ring. Während die Lippe vornehmlich olfaktorische Information von PNs aus dem AL erhält, wird der basale Ring zusätzlich auch von visuellen PNs, welche Informationen aus dem optischen Lobus einbringen, angesteuert. Der basale Ring der Honigbiene wird dabei Ort der ersten räumlichen Integration visuellen und olfaktorischen Eingangs. Wiederum ähnlich zum unimodalen Eingang der Lippe, bezieht auch der Hals des Calyx grundsätzlich nur sensorischen Eingang einer Modalität, nämlich visuelle Information von PNs aus dem optischen Lobus. KCs verschalten im weiteren Verlauf die olfaktorischen und visuellen Informationen an Pilzkörperausgangsneurone (MBON). In einem bisher kaum erforschten Vorgang wird diese multimodale Information dabei verarbeitet und dann mithilfe der MBONs in verschiedene Bereiche des Gehirns geleitet, z.B. in die protocerebralen Loben, die kontralaterale Gehirnhemisphäre oder das Zentralgehirn. Diese Dissertation ist zweigeteilt und behandelt zuerst (i) die geschlechtsspezifische Verarbeitung olfaktorischer Reize in Hummeln und bespricht im zweiten Teil (ii) neue Einblicke in die neuronale Weiterverarbeitung visueller Reize durch MBONs in der Honigbiene. Manuskript 1 untersucht die Abläufe der Geruchsverarbeitung von Bombus terrestris und beschreibt geschlechtsspezifische Unterschiede. Hierbei wurden sowohl verhaltensbasierte als auch elektrophysiologische Methoden genutzt um die Wahrnehmung ökologisch relevanter Duftstoffe (Komponenten unterschiedlicher Pflanzendüfte oder Pheromone) auf drei verschiedene Weisen zu untersuchen, nämlich in der Peripherie, im AL und mittels olfaktorischer Konditionierung. Wir fanden in beiden Geschlechtern eine robuste Gedächtnisbildung nach absoluter Konditionierung und eine ausgeprägte Generalisierung anhand der Kohlenstoffkettenlänge der präsentierten Duftstoffe. Anders stellten sich die Ergebnisse der elektroantennographischen (EAG) Untersuchungen dar. Hier zeigten sowohl Drohnen als auch Arbeiterinnen neuronale Aktivität mit spezifischen Unterschieden zwischen den Stimuli, aber auch zwischen den Geschlechtern auf, z.B. löste die Applikation von Citronellol eine deutliche verringerte Reaktion in der EAG Aktivität der Drohnen aus. Interessanterweise zeigten auch extrazelluläre Ableitungen im AL stimulus- und geschlechtsspezifische Unterschiede, jedoch in unterschiedlicher Konstellation als in den EAG-Experimenten. Besonders Farnesol und 2,3-Dihydrofarnesol wiesen vor allem bei Arbeiterinnen eine deutliche Repräsentation in der neuronalen Aktivität auf; ein Alleinstellungsmerkmal welches für Farnesol bereits in einer früheren Studie beschrieben wurde. Diese explizit unterschiedliche neuronale Darstellung von Farnesol und 2,3-Dihydrofarnesol in der Peripherie und im AL führt zu der Annahme, dass die rezeptive Darstellung eines Stimulus in der Peripherie keine zuverlässigen Rückschlüsse über die neuronale Repräsentation in höheren Zentren oder die ökologische Relevanz zulässt. Im zweiten Manuskript stehen MBONs der Honigbiene im Fokus, um mehr Einblicke in die visuelle Verarbeitung im VL zu erlangen. Bisher können MBONs in folgende Klassen unterteilt werden: Visuelle, olfaktorische und multimodale MBONs, welche sensitiv für beide Modalitäten sind. Kern dieser Arbeit ist, mittels extrazellulärer Ableitungen festzustellen, welche zusätzlichen Aspekte eines visuellen Stimulus in diesem zentralen Verarbeitungszentrum repräsentiert sind. Dabei konnte zum ersten Mal gezeigt werden, dass Informationen über die Wellenlänge und die Intensität des Lichtstimulus im VL erhalten sind. Im weiteren Verlauf konnte eine Spezifizierung der bisherigen Kategorisierung visueller und multimodaler MBONs in drei weitere Untergruppen vollzogen werden: MBONs die spezifisch die Intensität, die Identität und dein Eingang eines Stimulus kodieren. Des Weiteren zeigte vor allem die Gruppe der Identitäts-MBONs eine bemerkenswerte Kategorisierung von UV-Licht. Diese neuen Erkenntnisse bestätigen die Ansicht, dass der MB, als Zentrum für sensorische Integration, eine Kategorisierung der verarbeiteten Eindrücke vornimmt und diese daraufhin auf die MBONs verschalten wird. Abschließend diskutiere ich Unterschiede in der peripheren Repräsentation von Stimuli und ihrer späteren neuronalen Verarbeitung. Hier zeige ich, die Aktivität von Farnesol in MS1 und UV-Licht MS2 als Beispiel nehmend, dass die periphere Repräsentation eines Stimulus keine sicheren Schlussfolgerungen über die nachfolgend induzierte neurale Aktivität oder die verhaltensrelevante Bedeutung zulässt. Im weiteren Verlauf werden dabei die Einflüsse konservierter Strukturen und plastischer Änderungen auf die Abläufe der sensorischen Peripherie oder der höheren Verarbeitungszentren, wie dem AL oder dem MB gezeigt. Obwohl der MB, das Zentrum für multimodale Integration und Gedächtnis, hinsichtlich seiner Rolle in der Geruchswahrnehmung ausgiebig erforscht ist, gibt es bezüglich der visuellen Verarbeitung oder dem Einfluss anderer Modalitäten noch ungeklärte Abläufe und Fragen. Wenngleich auch hier die Kenntnis speziell über die visuelle Verarbeitung im MB stetig zunimmt, sollten zukünftige Arbeiten mithilfe weiterer Methoden den MB Eingang und Ausgang explizit auf den Einfluss weiterer Modalitäten untersuchen, um so ein umfassenderes Bild über die Abläufe multimodaler Integration zu erhalten.
150

Integrative, three-dimensional \(in\) \(silico\) modeling of gas exchange in the human alveolus / Integrative, dreidimensionale \(in\) \(silico\) Modellierung des Gasaustauschs in der menschlichen Alveole

Schmid, Kerstin January 2024 (has links) (PDF)
Die Lunge erfüllt durch den Austausch von Atemgasen eine überlebenswichtige Aufgabe. Der Gasaustausch erfolgt durch einen einfachen, aber entscheidenden passiven Diffusionsprozess. Dieser findet in den Alveolen statt, ballonartigen Strukturen, die an die peripheren Atemwege grenzen. Alveolen sind von einem dichten Netz aus kleinen Kapillaren umgeben. Hier kommt die eingeatmete Luft in unmittelbare Nähe zu dem vom Herzen kommenden sauerstoffarmen Blut und ermöglicht den Austausch von Sauerstoff und Kohlenstoffdioxid über deren Konzentrationsgradienten. Die Effizienz des Gasaustauschs kann anhand von Indikatoren wie der Sauerstoffdiffusionskapazität der Lunge und der Reaktionshalbzeit gemessen werden. Beim Menschen besteht eine beträchtliche Diskrepanz zwischen physiologischen Schätzungen der Diffusionskapazität und der theoretischen Maximalkapazität unter optimalen strukturellen Bedingungen (der morphologischen Schätzung). Diese Diskrepanz wird durch eine Reihe ineinandergreifender Faktoren beeinflusst, darunter strukturelle Elemente wie die Oberfläche und die Dicke der Diffusionsbarriere sowie physiologische Faktoren wie die Blutflussdynamik. Um die verschiedenen Rollen dieser Faktoren zu entschlüsseln, untersuchten wir, wie die morphologischen und physiologischen Eigenschaften der menschlichen alveolären Mikroumgebung kollektiv und individuell den Prozess des Gasaustauschs beeinflussen. Zu diesem Zweck entwickelten wir einen integrativen in silico Ansatz, der 3D morphologische Modellierung und Simulation von Blutfluss und Sauerstofftransport kombiniert. Im Mittelpunkt unseres Ansatzes steht die Simulationssoftware Alvin, die als interaktive Plattform für das zugrundeliegende mathematische Modell des Sauerstofftransports in der Alveole dient. Unser räumlich-zeitliches Modell wurde durch die Integration und Erweiterung bestehender mathematischer Modelle entwickelt und liefert Ergebnisse, die mit experimentellen Daten im Einklang stehen. Alvin ermöglicht eine immersive Auseinandersetzung mit dem simulierten Gasaustausch, indem sie Parameteränderungen in Echtzeit und die Ausführung mehrerer Simulationsinstanzen gleichzeitig ermöglicht während sie ein detailliertes quantitatives Feedback liefert. Die beteiligten morphologischen und physiologischen Parameter wurden mit einem Fokus auf der Mikrovaskulatur weiter untersucht. Durch die Zusammenstellung stereologischer Daten aus der Literatur und geometrischer 3D-Modellierung erstellten wir ein "sheet-flow" Modell als realistische Darstellung des menschlichen alveolären Kapillarnetzwerks. Blutfluss wurde mit Hilfe numerischer Strömungsdynamik simuliert. Unsere Ergebnisse stimmen mit früheren Schätzungen überein und unterstreichen die entscheidende Rolle von Viskositätsmodellen bei der Vorhersage des Druckabfalls in der Mikrovaskulatur. Darüber hinaus zeigten wir, wie unser Ansatz genutzt werden kann, um strukturelle Details wie die Konnektivität des alveolären Kapillarnetzes mit dem Gefäßbaum anhand von Blutflussindizes zu untersuchen. Es ist wichtig zu betonen, dass wir uns bislang auf verschiedene Datenquellen stützten und dass für weitere Fortschritte eine experimentelle Vailidierung erforderlich ist. Die Integration unserer Ergebnisse in Alvin ermöglichte die Quantifizierung des simulierten Gasaustauschprozesses über die Sauerstoffdiffusionskapazität und die Reaktionshalbzeit. Neben der Bewertung der kollektiven Einflüsse der morphologischen und physiologischen Eigenschaften erleichterte unsere interaktive Software auch die Bewertung einzelner Parameteränderungen. Die Betrachtung des Blutvolumens und der für den Gasaustausch zur Verfügung stehenden Oberfläche ergab lineare Korrelationen mit der Diffusionskapazität. Die Blutflussgeschwindigkeit hatte einen positiven, nichtlinearen Effekt auf die Diffusionskapazität. Die Reaktionshalbzeit bestätigte, dass der Gasaustauschprozess in der Regel nicht diffusionslimitiert ist. Insgesamt lieferte unser Alveolenmodell einen Wert für die Diffusionskapazität, der in der Mitte der früheren physiologischen und morphologischen Schätzung lag. Daraus lässt sich schließen, dass Phänomene auf Alveolarebene zu 50% der Limitierung der Diffusionskapazität beitragen, die in vivo eintreten. Zusammenfassend lässt sich sagen, dass unser integrativer in silico Ansatz verschiedene strukturelle und funktionelle Einflüsse auf den alveolären Gasaustausch aufschlüsselt und damit die traditionelle Forschung in der Atemwegsforschung ergänzt. Zusätzlich zeigen wir seinen Nutzen in der Lehre oder bei der Interpretation veröffentlichter Daten auf. Um unser Verständnis zu verbessern, sollten künftige Arbeiten vorrangig darauf ausgerichtet sein, einen zusammenhängenden experimentellen Datensatz zu erhalten und ein geeignetes Viskositätsmodell für Blutflusssimulationen zu finden. / The lung plays a vital role by exchanging respiratory gases. At the core of this gas exchange is a simple yet crucial passive diffusion process occurring within the alveoli. These balloon-like structures, connected to the peripheral airways, are surrounded by a dense network of small capillaries. Here, inhaled air comes into close proximity with deoxygenated blood coming from the heart, enabling the exchange of oxygen and carbon dioxide across their concentration gradients. The efficiency of gas exchange can be measured through indicators such as the diffusion capacity of the lung for oxygen and the reaction half-time. A notable discrepancy exists in humans between physiological estimates of diffusion capacity and the theoretical maximum capacity under optimal structural conditions (morphological estimate). This discrepancy is influenced by a range of interrelated factors, including structural elements like the surface area and thickness of the diffusion barrier, as well as physiological factors such as blood flow dynamics. To unravel the different roles of these factors, we investigated how morphological and physiological properties of the human alveolar micro-environment collectively and individually influence the process of gas exchange. To this end, we developed an integrative in silico approach combining 3D morphological modeling and simulation of blood flow and of oxygen transport. At the core of our approach lies the simulation software Alvin, serving as an interactive platform for the underlying mathematical model of oxygen transport within the alveolus. Developed by integrating and expanding existing mathematical models, our spatio-temporal model produces results in agreement with experimental data. Alvin allows for real-time parameter adjustments and the execution of multiple simultaneous simulation instances and provides detailed quantitative feedback, offering an immersive exploration of the simulated gas exchange process. The morphological and physiological parameters at play were further investigated with a focus on the microvasculature. By compiling a stereological database from the literature and 3D geometric modeling, we created a sheet-flow model as a realistic representation of the morphology of the human alveolar capillary network. Blood flow was simulated using computational fluid dynamics. Our findings were in line with previous estimations and highlighted the crucial role of viscosity models in predicting pressure drop across the microvasculature. Furthermore, we showcased how our approach can be harnessed to explore structural details, such as the connectivity of the alveolar capillary network with the vascular tree, using blood flow indices. It is important to emphasize that so far we have relied on different data sources and that experimental validation is needed to move forward. Integration of our findings into Alvin allowed quantification of the simulated gas exchange process through the diffusion capacity for oxygen and reaction half-time. In addition to evaluating the collective influences of the morphological and physiological properties, our interactive software facilitates the assessment of individual parameter value changes. Exploring blood volume and surface area available for gas exchange revealed linear correlations with diffusion capacity. The blood flow velocity had a positive, non-linear effect on diffusion capacity. The reaction half-time confirmed that under normal conditions, the gas exchange process is not diffusion-limited. Collectively, our alveolar model yielded a diffusion capacity value that fell in the middle of previous physiological and morphological estimates, implying that alveolar-level phenomena contribute to 50% of the diffusion capacity limitations that occur in vivo. In summary, our integrative in silico approach disentangles various structural and functional influences on alveolar gas exchange, complementing traditional investigations in respiratory research. We further showcase its utility in teaching and the interpretation of published data. To advance our understanding, future work should prioritize obtaining a cohesive experimental data set and identifying an appropriate viscosity model for blood flow simulations.

Page generated in 0.0397 seconds