1 |
Type II DNA topoisomerases in zebrafish developmentAzrak, Sami January 2008 (has links)
DNA topoisomerases are vital enzymes for major cellular processes like replication, transcription, and chromosome segregation. They play an essential role in solving DNA topological problems by catalysing the passage of DNA strands through each other via introducing transient single or double strand breaks. Type IIA DNA topoisomerases members introduce double strand breaks via an ATP-dependent strand passage reaction. This study aimed to investigate the roles of topo Ila and topo Iip in zebrafish development.
|
2 |
Metagenomic discovery and characterisation of restriction endonuclease from Kogelberg Biosphere ReserveMtimka, Sibongile 05 1900 (has links)
Restriction endonucleases are a group of enzymes that cleave DNA at or around specific sequences, which are typically palindromic. A fosmid library was constructed from a metagenome isolated from soil from the Kogelberg Nature Reserve, Western Cape and was functionally screened for restriction endonucleases. Next-generation (NGS) Illumina sequencing technology was used to identify putative endonucleases. The sequence data generated was assembled and analysed using CLC Bio Genomics Workbench and bioinformatics tools (NCBI BLAST, REBASE and MG-RAST). Using these tools, genes encoding restriction-modification systems and endonuclease homologues were discovered. Three genes were identified and were recombinantly produced in Rosetta™ (DE3) pLysS and purified with IMAC using Ni-TED resin and subsequently characterised. These three genes were selected based on the identity percentage when compared to sequences on the NCBI database. Production of Endo8 was scaled up using 2 l fermenter and the purification done using ÄKTA Avant 150 FPLC using a HiScale 50 column packed with Ni-TED resin and the total amount of protein achieved was 58.82 mg.g-1. The productivity achieved at 17 hours (8 h harvest) was 2-fold greater than at 12 hours. Endonuclease activity of endo8 and endo52 was tested, both exhibited strong non-specific activity at 37 °C with an incubation period of 30 min. This work demonstrates that environmental soil samples are a valuable source for discovery of novel enzymes and also the utility of functional metagenomics to discover and purify these enzymes. These endonucleases may contribute to the next generation of reagent enzymes for molecular biology research. / Chemistry / M. Sc. (Life Sciences)
|
3 |
The role of topoisomerase II in replication in mammalian cellsMuftic, Diana January 2011 (has links)
Topoisomerase 2α (Topo2α) is an essential protein with DNA decatenating enzymatic properties, indispensable for chromosome decatenation and segregation. It is a target for a plethora of antitumour drugs and Topo2α protein levels have been associated with the success of treatment, but also drug resistance and secondary malignancies. Although unique in its ability to resolve catenated chromosomes, the role of Topo2α in other steps of DNA metabolism, such as DNA replication elongation and termination have been elusive. A thorough understanding of the role of Topo2α in the cell will not only allow for increased insight into the mechanisms it is involved in, but it will also shed light on proteins and pathways that can act as back-up in its absence, and therefore hopefully expand the basis on which to improve treatment options. Through a synthetic lethal interaction (SLI) screen with an siRNA library targeting 200 DNA repair and signalling genes, Topo2α emerged as being synthetic lethal to Werner protein (WRN), a RecQ helicase involved in maintaining genome integrity mainly in S phase, and the loss of which leads to Werner Syndrome (WS), a segmental progeroid syndrome. The screen was performed in WRN deficient cells, with the initial aim to find proteins that act to buffer against loss of viability, which is the central idea in the concept of synthetic lethality in the absence of WRN. The screen revealed an SLI between WRN and Topo2α and although we were unable to fully validate this, it spurred the question of Topo2α’s role in DNA replication. The findings in this thesis suggest that Topo2α is not required for DNA elongation and timely completion of S phase, and that simultaneous loss of the closely related isoform Topo2β does not affect replication, suggesting that these proteins do not act in parallel back-up pathways during replication. Interestingly, cells accumulate in the polyploid fraction after both depletion and inhibition of Topo2α, albeit with different kinetics. The mechanistic basis of this phenotype remains to be understood through further research, but it is highly interesting as aneuplidity and polyploidy are implicated in the initial stages of tumour development.
|
Page generated in 0.0191 seconds