• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rapid Detection and Identification of Foodd-Borne Bacterial Pathogens by Multiplex PCR and Restriction Endonuclease Digestion

Hwang, Chung-Hsing 14 September 2001 (has links)
­^¤åºK­n Multiplex PCR amplification of 16S rRNA gene¡BvirA¡Btpl¡Band H1d genes was developed enabling simultaneous detection in Escherichia coli¡Aan indicator of fecal contamination and food-borne microbial pathogens¡AShigella flexneri¡BCitrobacter freundii¡BSalmonella typhi¡BVibrio cholerae¡BVibrio parahaemolyticus¡Band Staphylococcus aureus¡CEach of the nine pairs of oligonucleotide primers was found to support PCR amplifications of only its targeted gene¡CThe optimized multiplex PCR reaction utilized a primer annealing temperature of 59 ¢Jand used agarose gel electrophoresis for detection of the PCR-amplified products¡CSelection of appropriate target genes¡Boligonucleotide primers ¡BPCR reaction¡Band cycling parameters resulted in the amplification of four target genes simultaneously in a single PCR reaction with the sensitivity of detection was 102 CFU after 32 cycles¡CMultiplex PCR amplification followed by differential PCR for E. coli / Shigella¡A and Citrobacter / Salmonella¡Asequenced for the PCR-amplified products of 16S rRNA gene of the seven pathogens in this study¡Aand used restriction endonuclease AfaI to confirm the PCR-amplified products of V. cholerae¡AV. parahaemolyticus and Staphylococcus aureus¡Ahas been shown to be an sensitive¡Aspecific¡Aand rapid method to detect food-borne bacterial pathogens¡C
2

New Active Site Fold And The Role Of Metal Ions In Structure Function Relationship Of A Promiscuous Endonuclease - R.KpnI

Saravanan, M 01 1900 (has links)
Bacteria employ survival strategies to protect themselves against foreign invaders, including bacteriophages. The ‘immune system’ of bacteria relies mostly on restriction-modification (R-M) systems. The primary role of R-M systems is to protect the host from invading foreign DNA molecules. Three major types of R–M system are found in bacteria, viz.Types I, II and III. Type II R–M systems comprise a separate restriction endonuclease (REase) and a methyltransferase (MTase) that act independently of each other. Type II REases generally recognize palindromic sequences in DNA and cleave within or near their recognition sequences and produce DNA fragments of defined sizes. They have become indispensable tools in molecular biology and have been widely exploited for studying site-specific protein–DNA interactions. Surprisingly, these enzymes share little or no sequence homology among them, though the three-dimensional structures determined to date reveal a common-core motif (‘PD...D/EXK’ motif) with a central β-sheet that is flanked by α-helices on both sides. In the motif, two acidic residues (D and D/E) are important for the metal ion binding and catalysis. The work presented in this thesis deals with the determination of active site, elucidation of kinetic mechanism and study of evolution of sequence specificity using the well known, R.KpnI, from Klebsiella pneumoniae. The enzyme is a homodimer, which recognizes a palindromic double stranded DNA sequence, GGTAC↓C, and cleaves as shown. Unlike other REases, R.KpnI shows prolific promiscuous DNA cleavage in presence of Mg2+. Surprisingly, Ca2+ completely suppresses the Mg2+ mediated promiscuous activity and induces high fidelity cleavage at the recognition sequence. These unusual properties of R.KpnI led to the characterization of the active site of the enzyme. This thesis is divided into five chapters. Chapter 1 is a general introduction of R-M systems and an overview of the literature on active sites of Type II REases. It deals with discovery, nomenclature and classification followed by description of the enzymes diversity and general features of Type II REases. The different active site folds of the REases have been discussed in detail. The features of sequence specificity and the efforts undertaken to engineer the new specificity in the REases have been dealt at the end of the chapter. Chapter 2 describes identification and characterization of the R.KpnI active site by bioinformatics analyses, homology modeling and mutational studies. Bioinformatics analyses reveal that R.KpnI contains a ββα-Me-finger fold, which is a characteristic of many HNH-superfamily endonucleases. According to the homology model of R.KpnI, the putative active site residues correspond to the conserved residues present in HNH nucleases. Substitutions of these conserved residues in R.KpnI resulted in loss of the DNA cleavage activity, confirming their importance. This study provides the first experimental evidence for a Type IIP REase that is a member of the HNH superfamily and does not belong to the PD...D/EXK superfamily of nucleases. In Chapter 3 DNA binding and kinetic analysis of R.KpnI is presented. The metal ions which exhibit disparate pattern of DNA cleavage have no role in DNA recognition. The enzyme binds to both canonical and non-canonical DNA with comparable affinity irrespective of the metal ions used. Further, it was shown that Ca2+-imparted exquisite specificity of the enzyme is at the level of DNA cleavage and not at the binding step. The kinetic constants were obtained through steady-state kinetic analysis of R.KpnI in presence of different metal ions. With the canonical oligonucleotides, the cleavage rate of the enzyme was comparable for both Mg2+- and Mn2+-mediated reactions and was about three times slower with Ca2+. The enzyme discriminates non-canonical sequences poorly from the canonical sequence in Mg2+-mediated reactions unlike any other Type II REases, accounting for its promiscuous behavior. These studies suggest that R.KpnI displays properties akin to that of typical Type II REases and also endonucleases with degenerate specificity for DNA recognition and cleavage. In chapter 4, two uncommon roles for Zn2+ in R.KpnI are described. Examination of the sequence revealed the presence of a zinc finger (CCCH) motif rarely found in proteins of prokaryotic origin. Biophysical experiments and subsequent mutational analysis showed that the zinc binding motif tightly coordinates zinc to provide a rigid structural framework for the enzyme needed for its function. In addition to this structural scaffold, another atom of zinc binds to the active site to induce high fidelity cleavage and suppress the Mg2+- and Mn2+-mediated promiscuous behavior of the enzyme. This is the first demonstration of distinct structural and catalytic roles for zinc in a REase. Chapter 5 describes generation of highly sequence specific R.KpnI. Towards this end, site-directed mutants were generated at the putative secondary metal binding site. The DNA binding and cleavage analyses of the mutants at putative secondary metal binding site revealed that the secondary site is not important for primary catalysis and have a role in sequence specificity. A single amino acid change at the D163 position abolished the promiscuous activity of the wt enzyme in the presence of Mg2+ and Mn2+. Thus, a single point mutation converts the promiscuous endonuclease to a high fidelity REase. In conclusion, the work described in the thesis reveals new information on the REases in general and R.KpnI in particular. Many of the properties of R.KpnI elucidated in this thesis represent hitherto unknown features amongst REases. The presence of an HNH catalytic motif in the enzyme indicates the diversity of active site fold in REases and their distinct origin. Similarly, the high degree of promiscuity exhibited by the enzyme may hint at the evolutionary link between non-specific and highly sequence specific nucleases. The present studies also provide an example for the role of mutations in the evolution of sequence specificity. The utilization of different metal ions for DNA cleavage and the architectural role for Zn2+ in maintaining the structural integrity are other unusual properties of the enzyme.
3

Developing biocontainment strategies to suppress transgene escape via pollen dispersal from transgenic plants

Moon, Hong Seok 01 August 2011 (has links)
Genetic engineering is important to enhance crop characteristics and certain traits. Genetically engineered crop cultivation brings environmental and ecological concerns with the potential of unwanted transgene escape and introgression. Transgene escape has been considered as a major environmental and regulatory concern. This concern could be alleviated by appropriate biocontainment strategies. Therefore, it is important to develop efficient and reliable biocontainment strategies. Removing transgenes from pollen has been known to be the most environmentally friendly biocontainment strategy. A transgene excision vector containing a codon optimized serine resolvase CinH recombinase (CinH) and its recognition sites RS2 were constructed and transformed into tobacco (Nicotiana tabacum cv. Xanthi). In this system, the pollen-specific LAT52 promoter from tomato was employed to control the expression of CinH recombinase. Loss of expression of a green fluorescent protein (GFP) gene under the control of the LAT59 promoter from tomato was used as an indicator of transgene excision. Efficiency of transgene excision from pollen was determined by flow cytometry (FCM)-based pollen screening. While a transgenic event in the absence of CinH recombinase contained about 70% of GFP-synthesizing pollen, three single-copy transgene events contained less than 1% of GFP-synthesizing pollen based on 30,000 pollen grains analyzed per event. This suggests that CinH-RS2 recombination system could be effectively utilized for transgene biocontainment. A novel approach for selective male sterility in pollen was developed and evaluated as a biocontainment strategy. Overexpression of the EcoRI restriction endonuclease caused pollen ablation and/or infertility in tobacco, but exhibited normal phenotypes when compared to non-transgenic tobacco. Three EcoRI contained 0% GFP positive pollen, while GFP control plants contained 64% GFP positive pollen based on 9,000 pollen grains analyzed by flow cytometry-based transgenic pollen screening method. However, seven EcoRI events appeared to have 100% efficiency on selective male sterility based on the test-crosses. The results suggested that this selective male sterility could be used as a highly efficient and reliable biocontainment strategy for genetically engineered crop cultivation.
4

Structural and Functional Studies of DNA Nucleases: SgrAI and Mk0566

Shah, Santosh January 2013 (has links)
DNA nucleases are essential for various biological functions such as replication, recombination, and repair. Restriction endonucleases (REs) are excellent model system for the investigation of DNA recognition and specificity. SgrAI is a type IIF RE that cuts an 8 base pair primary sequence. In addition to its primary cleavage activity it also cleaves secondary sequences, but only appreciably in the presence of the primary sequence. The longer flanking DNA exhibits much greater activated DNA cleavage by SgrAI (>1000 fold activation by secondary site). Interestingly, the asymmetric cleavage seen in one of the two types of secondary site DNA is lost upon activation of SgrAI, suggesting a loss of communication between DNA recognition and activity upon specificity expansion. The structure of SgrAI bound to 22-1HT supports the cryoelectron microscopy structure of activated, oligomeric SgrAI highlighting the significance of the contacts made by the flanking DNA and the role played by N-terminal domain contacts in forming the run-on oligomer. The biological study suggests that the run-on oligomer formation sequesters the host DNA from being cleaved by the activated SgrAI complex. The DNA sequence binding, cleavage preference, and the structure of K96A SgrAI were determined. Unexpectedly, this mutation did not alter the structure of the enzyme, nor did it result in an enzyme lacking sequence preference at the 7ᵗʰ position. Instead, the largest effect of the mutation appears to be in making the enzyme more specific such that it fails to cleave either type of secondary site. It may be that the K96 side chain is required to distort the non YG sequences (specifically GG and TC) of secondary site DNA for proper positioning in the enzyme active site upon activation and specificity expansion. The crystal structure of Mk0566, XPG homologue from M. kandleri, was solved to 2.48 Å resolution and was found to be very similar to that of human FEN-1 and to other archaeal FEN-1/XPG homologues. These results suggest that the main biological role of Mk0566 is in DNA replication; however, they do not preclude involvement in a modified form of nucleotide excision repair.
5

Restrikcijos endonukleazės BpuJI struktūriniai ir funkciniai tyrimai / Structural and functional studies of the restriction endonuclease BpuJI

Sukackaitė, Rasa 15 December 2009 (has links)
II tipo restrikcijos endonukleazės atpažįsta specifines DNR sekas ir kerpa DNR šiose sekose arba šalia jų. BpuJI, atpažįstanti 5’-CCCGT seką, skiriasi nuo kitų fermentų tuo, kad jos kirpimo vieta yra labai variabili. Čia parodoma, kad BpuJI yra dimeras, sudarytas iš dviejų monomerų, kurie turi po du atskirus domenus. BpuJI N domenas atpažįsta taikinį kaip monomeras, o C-domenas pasižymi nukleaziniu aktyvumu ir dimerizuojasi. Apo-fermento nukleazinis aktyvumas yra nuslopintas. N-domenams atpažinus taikinį, aktyvuojamas C-domenas, kuris perkerpa DNR šalia taikinio. Be to, aktyvuotas C-domenas yra nespecifinė nukleazė, linkusi nukirpti ~3 nt nuo buko dvigrandės DNR galo. Taigi, BpuJI DNR karpymo pobūdis yra labai sudėtingas. Bioinformatinė analizė ir kryptinga mutagenezė parodė, kad BpuJI C-domenas turi PD-(D/E)XK struktūrinę sanklodą ir yra panašus į archėjų Holidėjaus jungtis karpančias nukleazes. Išsprendus 1,3 Å skiriamosios gebos BpuJI N-domeno/DNR komplekso erdvinė struktūrą, paaiškėjo, kad šį domeną sudaro du „sparnuotą“ spiralė-linkis-spiralė motyvą turintys subdomenai. BpuJI taikinį atpažįsta aminorūgštys, esančios N-rankoje ir abiejų spiralė-linkis-spiralė motyvų atpažinimo spiralėse. BpuJI N-domenas yra labiausiai panašus į Nt.BspD6I nukleazę, kerpančią vieną DNR grandinę. Nt.BspD6I/DNR komplekso struktūros modelis rodo, kad Nt.BspD6I ir BpuJI taikinį atpažįstantys struktūriniai elementai yra panašūs. / Type II restriction endonucleases recognize specific DNA sequences and cleave DNA at fixed positions within or close to this sequence. BpuJI recognizes the 5’-CCCGT sequence, but in contrast to other enzymes its cleavage site is very variable. This study shows that BpuJI is a dimer in solution and consists of two separate domains. The N-domain binds to the target sequence as a monomer, while the C-domain is responsible for nuclease activity and dimerization. The nuclease activity is repressed in the apo-enzyme and becomes activated upon specific DNA binding by the N-domains. The activated C-domain cleaves DNA near the target site. In addition, it possesses an end-directed nuclease activity and preferentially cuts ~3 nt from the 3’ terminus. This leads to a very complicated pattern of DNA cleavage. Bioinformatics and mutational analysis revealed that the BpuJI C-domain harbours a PD (D/E)XK active site and is structurally related to archaeal Holliday junction resolvases. The crystal structure of the BpuJI N-domain bound to cognate DNA was solved at 1.3 Å resolution. It revealed two winged-helix subdomains, D1 and D2. The recognition of the target sequence is achieved the amino acid residues located on both the HTH motifs and an N-terminal arm. The BpuJI DNA recognition domain is most similar to the nicking endonuclease Nt.BspD6I. The modelling suggests that Nt.BspD6I could share the specificity-determining regions with BpuJI.
6

Structural and functional studies of the restriction endonuclease BpuJI / Restrikcijos endonukleazės BpuJI struktūriniai ir ir funkciniai tyrimai

Sukackaitė, Rasa 15 December 2009 (has links)
Type II restriction endonucleases recognize specific DNA sequences and cleave DNA at fixed positions within or close to this sequence. BpuJI recognizes the 5’-CCCGT sequence, but in contrast to other enzymes its cleavage site is very variable. This study shows that BpuJI is a dimer in solution and consists of two separate domains. The N-domain binds to the target sequence as a monomer, while the C-domain is responsible for nuclease activity and dimerization. The nuclease activity is repressed in the apo-enzyme and becomes activated upon specific DNA binding by the N-domains. The activated C-domain cleaves DNA near the target site. In addition, it possesses an end-directed nuclease activity and preferentially cuts ~3 nt from the 3’ terminus. This leads to a very complicated pattern of DNA cleavage. Bioinformatics and mutational analysis revealed that the BpuJI C-domain harbours a PD (D/E)XK active site and is structurally related to archaeal Holliday junction resolvases. The crystal structure of the BpuJI N-domain bound to cognate DNA was solved at 1.3 Å resolution. It revealed two winged-helix subdomains, D1 and D2. The recognition of the target sequence is achieved the amino acid residues located on both the HTH motifs and an N-terminal arm. The BpuJI DNA recognition domain is most similar to the nicking endonuclease Nt.BspD6I. The modelling suggests that Nt.BspD6I could share the specificity-determining regions with BpuJI. / II tipo restrikcijos endonukleazės atpažįsta specifines DNR sekas ir kerpa DNR šiose sekose arba šalia jų. BpuJI, atpažįstanti 5’-CCCGT seką, skiriasi nuo kitų fermentų tuo, kad jos kirpimo vieta yra labai variabili. Čia parodoma, kad BpuJI yra dimeras, sudarytas iš dviejų monomerų, kurie turi po du atskirus domenus. BpuJI N domenas atpažįsta taikinį kaip monomeras, o C-domenas pasižymi nukleaziniu aktyvumu ir dimerizuojasi. Apo-fermento nukleazinis aktyvumas yra nuslopintas. N-domenams atpažinus taikinį, aktyvuojamas C-domenas, kuris perkerpa DNR šalia taikinio. Be to, aktyvuotas C-domenas yra nespecifinė nukleazė, linkusi nukirpti ~3 nt nuo buko dvigrandės DNR galo. Taigi, BpuJI DNR karpymo pobūdis yra labai sudėtingas. Bioinformatinė analizė ir kryptinga mutagenezė parodė, kad BpuJI C-domenas turi PD-(D/E)XK struktūrinę sanklodą ir yra panašus į archėjų Holidėjaus jungtis karpančias nukleazes. Išsprendus 1,3 Å skiriamosios gebos BpuJI N-domeno/DNR komplekso erdvinė struktūrą, paaiškėjo, kad šį domeną sudaro du „sparnuotą“ spiralė-linkis-spiralė motyvą turintys subdomenai. BpuJI taikinį atpažįsta aminorūgštys, esančios N-rankoje ir abiejų spiralė-linkis-spiralė motyvų atpažinimo spiralėse. BpuJI N-domenas yra labiausiai panašus į Nt.BspD6I nukleazę, kerpančią vieną DNR grandinę. Nt.BspD6I/DNR komplekso struktūros modelis rodo, kad Nt.BspD6I ir BpuJI taikinį atpažįstantys struktūriniai elementai yra panašūs.
7

Kontroliuojamo aktyvumo restrikcijos endonukleazių-tripleksą formuojančių oligonukleotidų konjugatai / Restriction endonuclease-triplex forming oligonucleotide conjugates with controllable catalytic activity

Šilanskas, Arūnas 02 July 2012 (has links)
Mutacijos, atsiradusios atitinkamuose žmogaus genuose, gali lemti pakitusių baltymų atsiradimą, kurie sukelia įvairias ligas (pvz.: vėžį), klaidingą embriono vystymąsi ar priešlaikinę mirtį. Tokios genetinės ligos gali būti gydomos genų terapijos būdu. Labiausiai vystoma genų terapijos strategija yra paremta homologine rekombinacija, kurios metu DNR seka, naudojama geno taisymui, yra patiekiama in trans. Natūraliai žinduolių ląstelėse homologinė rekombinacija (HR) vyksta žemu rekombinacijos dažniu (10-6). Tačiau yra žinoma, kad dvigrandininio trūkio įvedimas žymiai pagreitina HR (10-1). In vivo eksperimentų atveju dvigrandininio trūkio įvedimas turi būti ypač tikslus, todėl šis metodas reikalauja naujų molekulinių įrankių, kurie būtų itin specifiški ir griežtai kontroliuojami. Šiame darbe mes orientavomės į itin specifiškų ir griežtai kontroliuojamų meganukleazių kūrimą naudojant restrikcijos endonukleazių (REazių)-tripleksą formuojančių oligonukleotidų (TFO) konjugatus. REazių-TFO konjugatuose TFO suteikia specifiškumą prailgintam atpažinimo taikiniui per DNR triplekso susidarymą taip nukreipdamas restrikcijos fermentą prie konkretaus taikinio kur norima įvesti dvigrandininį trūkį. Šiuo tyrimu mes parodėme dvi alternatyvias restrikcijos endonukleazių-TFO konjugatų aktyvumo reguliavimo strategijas, kas leistų šias nukleazes panaudoti in vivo tyrimuose. Tuo tikslu buvo pasirinkti ortodoksiniai restrikcijos fermentai MunI ir Bse634I, kurie mūsų laboratorijoje yra gerai... [toliau žr. visą tekstą] / Simple mutations within the coding region of critical human genes can lead to the formation of abnormal proteins, resulting in various diseases (e.g. cancer), in failure of an embryo to develop, or premature death. Genetic diseases can only be truly cured via restoration of defective gene function and one of the most promising strategies is based on homologous recombination. Naturally homologous recombination occurs with a low frequency (1 in 106 transfected cells), however it is known that DNA double-strand breaks enhance the efficiency of homologous recombination by several orders of magnitude (up to 10,000-fold). Therefore, gene therapy via homologous recombination requires new molecular tools that should be highly specific and rigorously controllable. In this work we have focused on the development of restriction enzyme-triple helix forming oligonucleotide (TFO) conjugates, where TFO provides specificity for the extended recognition site through the triple helix formation and addresses restriction enzyme to a particular target site where it introduces a double stranded break. We provide proof-of-concept demonstrations of two alternative strategies to control the DNA cleavage activity of restriction endonuclease-TFO conjugates, that allows adopt them in in vivo experiments. To this end we used restriction endonucleases MunI and Bse634I, which were structurally and biochemically characterized before in our laboratory. We successfully combined the restriction endonuclease... [to full text]
8

Restriction endonuclease-triplex forming oligonucleotide conjugates with controllable catalytic activity / Kontroliuojamo aktyvumo restrikcijos endonukleazių-tripleksą formuojančių oligonukleotidų konjugatai

Šilanskas, Arūnas 02 July 2012 (has links)
Simple mutations within the coding region of critical human genes can lead to the formation of abnormal proteins, resulting in various diseases (e.g. cancer), in failure of an embryo to develop, or premature death. Genetic diseases can only be truly cured via restoration of defective gene function and one of the most promising strategies is based on homologous recombination. Naturally homologous recombination occurs with a low frequency (1 in 106 transfected cells), however it is known that DNA double-strand breaks enhance the efficiency of homologous recombination by several orders of magnitude (up to 10,000-fold). Therefore, gene therapy via homologous recombination requires new molecular tools that should be highly specific and rigorously controllable. In this work we have focused on the development of restriction enzyme-triple helix forming oligonucleotide (TFO) conjugates, where TFO provides specificity for the extended recognition site through the triple helix formation and addresses restriction enzyme to a particular target site where it introduces a double stranded break. We provide proof-of-concept demonstrations of two alternative strategies to control the DNA cleavage activity of restriction endonuclease-TFO conjugates, that allows adopt them in in vivo experiments. To this end we used restriction endonucleases MunI and Bse634I, which were structurally and biochemically characterized before in our laboratory. We successfully combined the restriction endonuclease... [to full text] / Mutacijos, atsiradusios atitinkamuose žmogaus genuose, gali lemti pakitusių baltymų atsiradimą, kurie sukelia įvairias ligas (pvz.: vėžį), klaidingą embriono vystymąsi ar priešlaikinę mirtį. Tokios genetinės ligos gali būti gydomos genų terapijos būdu. Labiausiai vystoma genų terapijos strategija yra paremta homologine rekombinacija, kurios metu DNR seka, naudojama geno taisymui, yra patiekiama in trans. Natūraliai žinduolių ląstelėse homologinė rekombinacija (HR) vyksta žemu rekombinacijos dažniu (10-6). Tačiau yra žinoma, kad dvigrandininio trūkio įvedimas žymiai pagreitina HR (10-1). In vivo eksperimentų atveju dvigrandininio trūkio įvedimas turi būti ypač tikslus, todėl šis metodas reikalauja naujų molekulinių įrankių, kurie būtų itin specifiški ir griežtai kontroliuojami. Šiame darbe mes orientavomės į itin specifiškų ir griežtai kontroliuojamų meganukleazių kūrimą naudojant restrikcijos endonukleazių (REazių)-tripleksą formuojančių oligonukleotidų (TFO) konjugatus. REazių-TFO konjugatuose TFO suteikia specifiškumą prailgintam atpažinimo taikiniui per DNR triplekso susidarymą taip nukreipdamas restrikcijos fermentą prie konkretaus taikinio kur norima įvesti dvigrandininį trūkį. Šiuo tyrimu mes parodėme dvi alternatyvias restrikcijos endonukleazių-TFO konjugatų aktyvumo reguliavimo strategijas, kas leistų šias nukleazes panaudoti in vivo tyrimuose. Tuo tikslu buvo pasirinkti ortodoksiniai restrikcijos fermentai MunI ir Bse634I, kurie mūsų laboratorijoje yra gerai... [toliau žr. visą tekstą]
9

3D rekonstrukce makromolekulárních komplexů pomocí kryoelektronové mikroskopie / 3D reconstruction of macromolecular complexes by cryoelectron microscopy

Skoupý, Radim January 2016 (has links)
Semester project deals with the processing of data from TEM and their analysis (to- mography, single particle analysis). The main aim of this work is to determine the 3D structure of the studied enzyme. As a test sample with low symmetry is used restriction endonuclease EcoR124I.
10

Generation of rho zero cells

Schubert, Susanne, Heller, Sandra, Löffler, Birgit, Schäfer, Ingo, Seibel, Martina, Villani, Gaetano, Seibel, Peter 30 April 2015 (has links) (PDF)
Human mitochondrial DNA (mtDNA) is located in discrete DNA-protein complexes, so called nucleoids. These structures can be easily visualized in living cells by utilizing the fluorescent stain PicoGreen®. In contrary, cells devoid of endogenous mitochondrial genomes (ρ0 cells) display no mitochondrial staining in the cytoplasm. A modified restriction enzyme can be targeted to mitochondria to cleave the mtDNA molecules in more than two fragments, thereby activating endogenous nucleases. By applying this novel enzymatic approach to generate mtDNA-depleted cells the destruction of mitochondrial nucleoids in cultured cells could be detected in a time course. It is clear from these experiments that mtDNA-depleted cells can be seen as early as 48 h post-transfection using the depletion system. To prove that mtDNA is degraded during this process, mtDNA of transfected cells was quantified by real-time PCR. A significant decline could be observed 24 h post-transfection. Combination of both results showed that mtDNA of transfected cells is completely degraded and, therefore, ρ0 cells were generated within 48 h. Thus, the application of a mitochondrially-targeted restriction endonuclease proves to be a first and fast, but essential step towards a therapy for mtDNA disorders.

Page generated in 0.2627 seconds