• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An analysis of the nucleotide requirements for DNA binding by the human pallomavirus type 16 E2 protein

Thain, Alison January 1996 (has links)
No description available.
2

The kinetics of DNA cleavage by the EcoRV restriction endonuclease

Erskine, Symon George January 1996 (has links)
No description available.
3

The Eco RV restriction endonuclease : an investigation using resonance raman spectroscopy and oligonucleotide phosphorothioates

Thorogood, Harry January 1996 (has links)
No description available.
4

Characterization and mutations in the human sex determining factor SRY

Pontiggia, Andrea January 1998 (has links)
No description available.
5

The multiple roles of zinc finger domains

Simpson, Raina Jui Yu January 2004 (has links)
Zinc finger (ZnF) domains are prevalent in eukaryotes and play crucial roles in mediating protein-DNA and protein-protein interactions. This Thesis focuses on the molecular details underlying interactions mediated by two ZnF domains. The GATA-1 protein is vital for the development of erythrocytes and megakaryocytes. Pertinent to the protein function is the N-terminal ZnF. In particular, this domain mediates interaction with DNA containing GATC motifs and the coactivator protein FOG. The importance of these interactions was illustrated by the findings in Chapter 3 that naturally occurring mutations identified in patients suffering from blood disorders affect the interaction of the N-terminal ZnF with either DNA (R216Q mutation) or FOG (V205M and G208S mutations). In addition to the interaction FOG makes with GATA-1, it also interacts with the centrosomal protein TACC3. In Chapter 4, this interaction is characterised in detail. The solution structure of the region of FOG responsible for the interaction is determined using NMR spectroscopy, revealing that it is a true classical zinc finger, and characterisation of the interaction domain of TACC3 showed that the region is a dimeric coiled-coil. The FOG:TACC3 interaction appears to be mediated by a-helices from the two proteins. The data presented here represent some of the first described molecular details of how a classical ZnF can contact a protein partner. Interestingly, the a-helix used by the FOG finger to bind TACC3 is the same region utilised by DNA-binding classical zinc fingers to contact DNA. In addition to the multiple roles played by ZnFs, this domain is also known for its robustness and versatility. In Chapter 5, incomplete ZnF sequences were assessed for its ability to form functional zinc-binding domains. Remarkably, CCHX sequences (in the context of BKLF finger 3) were able to form discrete zinc-binding domains and also, mediate both protein-DNA and protein-protein interactions. This result not only illustrates the robust nature of ZnFs, it highlights the need for expanding ZnF sequence criteria when searching for functional zinc-binding modules. Together, the data presented here help further our understanding of zinc finger domains. Similar to the use of DNA-binding ZnFs in designer proteins, these data may start us on the path of designing novel protein-binding ZnFs.
6

The multiple roles of zinc finger domains

Simpson, Raina Jui Yu January 2004 (has links)
Zinc finger (ZnF) domains are prevalent in eukaryotes and play crucial roles in mediating protein-DNA and protein-protein interactions. This Thesis focuses on the molecular details underlying interactions mediated by two ZnF domains. The GATA-1 protein is vital for the development of erythrocytes and megakaryocytes. Pertinent to the protein function is the N-terminal ZnF. In particular, this domain mediates interaction with DNA containing GATC motifs and the coactivator protein FOG. The importance of these interactions was illustrated by the findings in Chapter 3 that naturally occurring mutations identified in patients suffering from blood disorders affect the interaction of the N-terminal ZnF with either DNA (R216Q mutation) or FOG (V205M and G208S mutations). In addition to the interaction FOG makes with GATA-1, it also interacts with the centrosomal protein TACC3. In Chapter 4, this interaction is characterised in detail. The solution structure of the region of FOG responsible for the interaction is determined using NMR spectroscopy, revealing that it is a true classical zinc finger, and characterisation of the interaction domain of TACC3 showed that the region is a dimeric coiled-coil. The FOG:TACC3 interaction appears to be mediated by a-helices from the two proteins. The data presented here represent some of the first described molecular details of how a classical ZnF can contact a protein partner. Interestingly, the a-helix used by the FOG finger to bind TACC3 is the same region utilised by DNA-binding classical zinc fingers to contact DNA. In addition to the multiple roles played by ZnFs, this domain is also known for its robustness and versatility. In Chapter 5, incomplete ZnF sequences were assessed for its ability to form functional zinc-binding domains. Remarkably, CCHX sequences (in the context of BKLF finger 3) were able to form discrete zinc-binding domains and also, mediate both protein-DNA and protein-protein interactions. This result not only illustrates the robust nature of ZnFs, it highlights the need for expanding ZnF sequence criteria when searching for functional zinc-binding modules. Together, the data presented here help further our understanding of zinc finger domains. Similar to the use of DNA-binding ZnFs in designer proteins, these data may start us on the path of designing novel protein-binding ZnFs.
7

Application of proximity Ligation for Detection of Proteins, Biomolecular Interactions, and Single Copies of Pathogens

Gustafsdottir, Sigrun Margret January 2006 (has links)
<p>Proximity ligation is a recently established technique that can provide answers to questions about the concentration, localization, interactions, modifications and functions of proteins. The method enables sensitive protein measurements with a detection limit in the low femtomolar range in complex biological samples. In proximity ligation, the challenge of detecting specific proteins is converted to the analysis of specific DNA sequences. Proximity probes containing oligonucleotide extensions are designed to bind pairwise to target proteins, and to form amplifiable tag sequences upon ligation when brought in proximity. Protocols for the conversion of monoclonal or polyclonal antibodies into proximity probes through the attachment of oligonucleotide sequences are described in the thesis. In addition, the thesis describes the adaptation of the proximity ligation technology for detection of microbial pathogens, analysis of interactions between proteins and nucleic acids, and of inhibition of receptor-ligand interactions. </p><p>Nucleic acid amplification allows specific detection of pathogens with single-copy sensitivity. There are many circumstances, however, when analysis of pathogen surface antigens or the antibody response can provide increased diagnostic value. Proximity ligation reactions were used to measure numbers of virus and bacteria by detection of viral or bacterial surface proteins. Detection sensitivities similar to those of nuclear acid-based detection reactions were achieved directly in infected samples for a parvovirus and for an intracellular bacterium. </p><p>Biological processes are orchestrated by interactions of proteins with molecules in their environment, and investigations of interactions between proteins and other biomolecules are thus of great importance. Protocols were established for very specific and sensitive homogeneous-phase analysis of interactions between proteins and specific nucleic acid sequences. Finally, the proximity ligation mechanism was used to monitor interactions between VEGF-A and two of its receptors, VEGFR-1 and VEGFR-2, and to characterize the effects of agents disrupting this interaction.</p>
8

Application of proximity Ligation for Detection of Proteins, Biomolecular Interactions, and Single Copies of Pathogens

Gustafsdottir, Sigrun Margret January 2006 (has links)
Proximity ligation is a recently established technique that can provide answers to questions about the concentration, localization, interactions, modifications and functions of proteins. The method enables sensitive protein measurements with a detection limit in the low femtomolar range in complex biological samples. In proximity ligation, the challenge of detecting specific proteins is converted to the analysis of specific DNA sequences. Proximity probes containing oligonucleotide extensions are designed to bind pairwise to target proteins, and to form amplifiable tag sequences upon ligation when brought in proximity. Protocols for the conversion of monoclonal or polyclonal antibodies into proximity probes through the attachment of oligonucleotide sequences are described in the thesis. In addition, the thesis describes the adaptation of the proximity ligation technology for detection of microbial pathogens, analysis of interactions between proteins and nucleic acids, and of inhibition of receptor-ligand interactions. Nucleic acid amplification allows specific detection of pathogens with single-copy sensitivity. There are many circumstances, however, when analysis of pathogen surface antigens or the antibody response can provide increased diagnostic value. Proximity ligation reactions were used to measure numbers of virus and bacteria by detection of viral or bacterial surface proteins. Detection sensitivities similar to those of nuclear acid-based detection reactions were achieved directly in infected samples for a parvovirus and for an intracellular bacterium. Biological processes are orchestrated by interactions of proteins with molecules in their environment, and investigations of interactions between proteins and other biomolecules are thus of great importance. Protocols were established for very specific and sensitive homogeneous-phase analysis of interactions between proteins and specific nucleic acid sequences. Finally, the proximity ligation mechanism was used to monitor interactions between VEGF-A and two of its receptors, VEGFR-1 and VEGFR-2, and to characterize the effects of agents disrupting this interaction.
9

A Structural and Mechanistic Study of Two Members of Cupin Family Protein

Liu, Fange 18 June 2013 (has links)
is a functionally diverse large group of proteins sharing a jelly roll β-barrel fold. An enzymatic member 3-hydroxyanthranilate-3,4-dioxygenase (HAO) and a non-enzymatic member pirin, which is a human nuclear metalloprotein of unknown function present in all human tissues, were selected for structural and functional studies in this dissertation work. HAO is an important enzyme for tryptophan catabolism and for 2-nitrobenzoic acid biodegradation. In this work, seven catalytic intermediate were captured in HAO single crystals, enabling for the first time a nearly complete structural snapshot viewing of the entire molecular oxygen activation and insertion mechanism in an iron- and O2-depedent enzyme. The rapid catalytic turnover rate was found achieved in large part by protein dynamics that facilitates O2 binding to the catalytic iron, which is bound to the enzyme by a facile 2-His-1-carboxylate ligand motif. An iron storage and chaperon mechanism was also discovered in the bacterial source of this enzyme, which led to a proposed novel biological function of a mononuclear iron-sulfur center. Although human pirin protein shares the same structural fold with HAO, its iron ion is coordinated by a 3-His-1-carboxylate ligand motif. Pirin belongs to a subset of proteins whose members are playing regulatory functions in the superfamily. In this work, pirin is shown to act as a redox sensor for the NF-κB transcription factor, a critical mediator of intracellular signaling that has been linked to cellular responses to pro-inflammatory signals which controls the expression of a vast array of genes involved in immune and stress responses.
10

The Facilitation of Protein-DNA Search and Recognition by Multiple Modes of Binding

Leith, Jason 21 December 2012 (has links)
The studies discussed in this thesis unify experimental and theoretical techniques, both established and novel, in investigating the problem of how a protein that binds specific sites on DNA translocates to, recognizes, and stably binds to its target site or sites. The thesis is organized into two parts. Part I outlines the history of the problem and the theory and experiments that have addressed the problem and presents an apparent incompatibility between efficient search and stable, specific binding. To address this problem, we elaborate a model of protein-DNA interaction in which the protein may bind DNA in either a search (S) mode or a recognition (R) mode. The former is characterized by zero or weak sequence-dependence in the binding energy, while the latter is highly sequence-dependent. The protein undergoes a random walk along the DNA in the S mode, and if it encounters its target site, must undergo a conformational transition into the R mode. The model resolves the apparent paradox, and accounts for the observed speed, specificity, and stability in protein-DNA interactions. The model shows internal agreement as regards theoretical and simulated results, as well as external agreement with experimental measurements. Part II reports on research that has tested the applicability of the two-mode model to the tumor suppressor transcription factor p53. It describes in greater depth the experimental techniques and findings up to the present work, and introduces the techniques and biological system used in our research. We employ single-molecule optical microscopy in two projects to study the diffusional kinetics of p53 on DNA. The first project measures the diffusion coefficient of p53 and determines that the protein satisfies a number of requirements for the validity of the two-mode model and for efficient target localization. The second project examines the sequence-dependence in p53's sliding kinetics, and explicitly models the energy landscape it experiences on DNA and relates features of the landscape to observed local variation in diffusion coefficient. The thesis closes with proposed extensions and complements to the projects, and a discussion of the implications of our work and its relation to recent developments in the field.

Page generated in 0.1842 seconds