• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 12
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 51
  • 48
  • 31
  • 25
  • 24
  • 22
  • 20
  • 17
  • 16
  • 15
  • 14
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Dopaminergic Denervation Enhances Susceptibility to Hydroxyl Radicals in Rat Neostriatum

Kostrzewa, R. M., Kostrzewa, J. P., Brus, R. 14 October 2000 (has links)
To determine if greater amounts of hydroxyl radical (·OH) are formed by dopamine (DA) denervation and treatment with L-dihydroxyphenylalanine (L-DOPA), the neostriatum was DA denervated (99% reduction in DA content) by 6-hydroxydopamine treatment (134μg icv, desipramine pretreatment) of neonatal rats. At 10 weeks the peripherally restricted dopa decarboxylase inhibitor carbidopa (12.5mg/kg i.p.) was administered 30min before vehicle, L-DOPA (60mg/kg i.p.), or the known generator of reactive oxygen species, 6-hydroxydopa (6-OHDOPA) (60mg/ kg i.p.); and this was followed 30min later (and 15 min before termination) by the spin trap, salicylic acid (8 μmoles icv). By means of a high performance liquid chromatographic method with electrochemical detection, we found a 4-fold increase in the non-enzymatically formed spin trap product, 2,3-dihydroxybenzoic acid (2,3-DHBA), with neither L-DOPA nor 6-OHDOPA having an effect on 2,3-DHBA content of the neostriatum. Basal content of 2,5-DHBA, the enzymatically formed spin trap product, was 4-fold higher vs. 2,3-DHBA in the neostriatum of untreated rats, while L-DOPA and 6-OHDOPA each reduced formation of 2,5-DHBA. We conclude that DA innervation normally suppresses ·OH formation, and that the antiparkinsonian drug L-DOPA has no effect (2,3-DHBA) or slightly reduces (2,5-DHBA) ·OH formation in the neostriatum, probably by virtue of its bathing the system of newly formed ·OH.
62

Modeling Tardive Dyskinesia: Predictive 5-HT<sub>2c</sub> Receptor Antagonist Treatment

Kostrzewa, Richard M., Huang, Nuo Yu, Kostrzewa, John P., Nowak, Przemyslaw, Brus, Ryszard 01 March 2007 (has links)
Tardive dyskinesia (TD), a movement disorder produced by long-term treatment with a classical antipsychotic drug, is generally considered to be a disorder of dopamine (DA) systems, since classical antipsychotics are potent DA D2 receptor blockers. Also, acute DA D1 agonist treatment of rats is known to produce vacuous chewing movements (VCMs), a behavioral feature resembling the oral dyskinesia that is so prominent in most instances of TD. In this paper we outline a series of studies in a new animal model of TD in which DA D1 receptor supersensitivity was produced by neonatal 6-hydroxydopamine (6-OHDA)-induced destruction of nigrostriatal DA fibers. In rats so-lesioned 5-HT receptor supersensitivity is additionally produced, and in fact 5-HT receptor antagonists attenuate enhanced DA D16-lesioned rats treated with haloperidol for one year, there is a 2-fold increase in numbers of VCMs (versus intact rats treated with haloperidol); and this high frequency of VCMs persists for more than 6 months after discontinuing haloperidol treatment. During this stage, 5-HT2 receptor antagonists, but not DA D1 receptor antagonists, attenuate the incidence of VCMs. This series of findings implicates the 5-HT neuronal phenotype in TD, and promotes 5-HT2 receptor antagonists, more specifically 5-HT2C receptor antagonists, as a rational treatment approach for TD in humans.
63

Serotoninergics Attenuate Hyperlocomotor Activity in Rats. Potential New Therapeutic Strategy for Hyperactivity

Brus, Ryszard, Nowak, Przemyslaw, Szkilnik, Ryszard, Mikolajun, Urszula, Kostrzewa, Richard M. 01 December 2004 (has links)
Hyperactivity is thought to be associated with an alteration of dopamine (DA) neurochemistry in brain. This conventional view became solidified on the basis of observed hyperactivity in DA-lesioned animals and effectiveness of the dopaminomimetics such as amphetamine (AMP) in abating hyperactivity in humans and in animal models of hyperactivity. However, because AMPreleases serotonin (5-HT) as well as DA, we investigated the potential role of 5-HT in an animal model of hyperactivity. We found that a greater intensity of hyperactivity was produced in rats when both DA and 5-HT neurons were damaged at appropriate times in ontogeny. Therefore, previously we proposed this as an animal model of attention deficit hyperactivity disorder (ADHD) - induced by destruction of dopaminergic neurons with 6-hydroxydopamine (6-OHDA (neonatally) and serotoninergic neurons with 5,7-dihydroxytryptamine (5,7-DHT) (in adulthood). In this model effects similar to that of AMP(attenuation of hyperlocomotion) were produced by m-chlorophenylpiperazine (m-CPP) but not by 1-phenylbiguanide (1-PG), respective 5-HT2 and 5-HT3 agonists. The effect of m-CPP was shown to be replicated by desipramine, and was largely attenuated by the 5-HT2 antagonist mianserin. These findings implicate 5-HT neurochemistry as potentially important therapeutic targets for treating human hyperactivity and possibly childhood ADHD.
64

Serotonin (5-HT) Systems Mediate Dopamine (DA) Receptor Supersensitivity

Kostrzewa, R. M., Gong, L., Brus, R. 01 January 1993 (has links)
No description available.
65

Effects of Bilateral Lesion of the Locus Coeruleus and of Neonatal Administration of 6-Hydroxydopamine on the Concentration of Individual Proteins in Rat Brain

Heydorn, William E., Nguyen, Khanh Q., Joseph Creed, G., Kostrzewa, Richard M., Jacobowitz, David M. 05 March 1986 (has links)
The role that norepinephrine plays in regulating the concentration of different proteins in the parietal cortex, hippocampus and cerebellum was assessed by investigating the effects of either a bilateral lesion of the locus coeruleus or neonatal administration of 6-hydroxydopamine. Two weeks after lesioning the locus coeruleus, the concentration of two different proteins was elevated in the hippocampus; a third protein was reduced in concentration in this brain area as a result of the lesion. Three proteins were affected in concentration in the cerebellum after the locus coeruleus lesion - two were elevated in concentration and one was reduced in concentration. No proteins were altered in concentration in the parietal cortex as a result of the lesion. Seventy days after neonatal treatment with 6-hydroxydopamine, a total of 6 proteins were found to be changed. Four of these (one in the hippocampus and 3 in the parietal cortex) were reduced in concentration while two proteins (both in the cerebellum) were elevated in concentration after neonatal treatment with the catecholamine neurotoxin. There was little overlap between those proteins affected in concentration by the bilateral lesion of the locus coeruleus and those changed by neonatal treatment with 6-hydroxydopamine. These results suggest that the concentration of a number of different proteins may, under normal physiological conditions, be regulated in vivo by norepinephrine in the brain.
66

Ontogenic Homologous Supersensitization of Dopamino D<sub>1</sub> Receptors

Hamdi, Anwar, Kostrzewa, Richard M. 02 October 1991 (has links)
To determine whether prolonged supersensitization of dopamine D-1 receptors could be produced during ontogeny, rats were treated daily, from birth, for 33 consecutive days with the D-1 receptor agonist, SKF 38393 HC1 (3.0 mg/kg per day i.p.). These rats were additionally treated at 3 days after birth with the neurotoxin, 6-hydroxydopamine HBr (6-OHDA; 200 μg, i.c.v., half in each lateral ventricle) or its vehicle. At 6 to 7 weeks from birth a challenge dose of SKF 38393 HCl (3.0 mg/kg i.p.) increased stereotypy scores for a number of behaviors in 6-OHDA-lesioned rats that were treated repeatedly during ontogeny with SKF 38393. These accentuated behaviors included licking, grooming, taffy pulling, jumping, paw treading and locomotion. Although the findings demonstrate an increased sensitivity of D-1 receptors to an agonist, there was no change in the Bmax or Kd for D-1 receptors in the striatum. In rats that were treated during postnatal development with SKF 38393, but not lesioned with 6-OHDA, SKF 38393-induced stereotyped behaviors were not substantially different from control. The neonatally primed rat model may be useful for probing mechanisms of receptor supersensitivity.
67

Neonatal 6‐hydroxydopamine and Adult SKF 38393 Treatments Alter Dopamine D<sub>1</sub> Receptor mRNA Levels: Absence of Other Neurochemical Associations With the Enhanced Behavioral Responses of Lesioned Rats

Gong, Li, Kostrzewa, Richard M., Li, Chuanfu 01 January 1994 (has links)
Abstract: To study potential biochemical correlates of dopamine (DA) and serotonin receptor supersensitivity, rats were lesioned at 3 days after birth with 6‐hydroxydopamine (6‐OHDA; 67 µg in each lateral ventricle; desipramine pretreatment, 20 mg/kg i.p., 1 h) and then sensitized with the DA D1 agonist, SKF 38393 HCl (3.0 mg/kg i.p. per day) either ontogenetically (daily, for 28 consecutive days from birth) and/or in adulthood (four weekly injections, 6–9 weeks from birth). Controls received vehicle in place of 6‐OHDA or SKF 38393. Enhanced locomotor responses were observed after SKF 38393 at 6 weeks, only in rats that received SKF 38393 + 6‐OHDA in ontogeny. Locomotor responses were further enhanced in this group after the last of four weekly SKF 38393 injections at the 9th week. These weekly SKF 38393 treatments also produced enhanced responses in 6‐OHDA rats that did not receive SKF 38393 in ontogeny. When striata were studied at 11 weeks, the percentages of high and low affinity DA D1 binding sites were not altered. Basal as well as DA‐, NaF‐, and forskolin‐stimulated adenylyl cyclase activities also were not changed. Dot blot analysis showed that there was a reduction of mRNA levels for DA D1, but not serotonin1C, receptors in the 6‐OHDA groups. However, SKF 38393 at 6–9 weeks eliminated this alteration. Based on these findings it can be proposed that supersensitization may be a consequence of altered neuronal cross talk rather than an imbalance of receptor elements per se.
68

Autoradiographic Localization of Angiotensin II Receptor Binding Sites on Noradrenergic Neurons of the Locus Coeruleus of the Rat

Rowe, Brian P., Kalivas, Peter W., Speth, Robert C. 01 January 1990 (has links)
The locus coeruleus (LC) of the rat was lesioned by microinjection of selective neurotoxins into the brainstem. 6‐Hydroxydopamine (6‐OHDA), 3 μg/μl, given unilaterally at two sites 0.6 mm apart on the rostro‐caudal axis of the LC, was used to lesion catecholamine‐containing neuronal elements. Ibotenic acid, 2.5 μg/0.5 μl, administered similarly was used to lesion nerve cell bodies. Two weeks after administration of the neurotoxin, lesion efficacy was determined based on the norepinephrine content of the cerebral cortex ipsi‐ and contralateral to the lesion. 6‐OHDA lesions of the LC caused a 46% reduction in ipsilateral cortical norepinephrine and a 60% reduction in specific 125I‐[Sar1, Ile8]‐angiotensin II (125I‐SIAII) binding in the LC. Ibotenic acid lesions of the LC caused a 73% reduction in ipsilateral cortical norepinephrine and a 81% reduction in specific 125I‐SIAII binding in the LC. These results indicate that All receptor binding sites in the LC are localized on noradrenergic nerve cell bodies or their dendritic and axonal ramifications within the LC.
69

Rôle des neuromodulateurs dans les fonctions visuelles : l'angiotensine II et la dopamine

Coudé, Gino January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
70

Efeito neuroprotetor de Anacardium Microcapum-duke em dano induzido por 6-ohda em córtex cerebral de Pintainhos

Martins, Illana Kemmerich, Posser, Thaís 05 April 2017 (has links)
Submitted by Ana Damasceno (ana.damasceno@unipampa.edu.br) on 2017-05-09T19:13:02Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Efeito neuroprotetor de Anacardium Microcapum-duke em dano induzido por 6-ohda em córtex cerebral de Pintainhos.pdf: 1865633 bytes, checksum: 3c3083e33b14387c66dd69ed3da41472 (MD5) / Made available in DSpace on 2017-05-09T19:13:02Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Efeito neuroprotetor de Anacardium Microcapum-duke em dano induzido por 6-ohda em córtex cerebral de Pintainhos.pdf: 1865633 bytes, checksum: 3c3083e33b14387c66dd69ed3da41472 (MD5) Previous issue date: 2017-04-05 / A Doença de Parkinson (DP) é uma doença degenerativa, crônica e progressiva, acomete o sistema nervoso central e é responsável pela degeneração dos neurônios dopaminérgicos. Sabese que alterações genéticas e ambientais como exposição a agroquímicos, estresse oxidativo e disfunção mitocondrial estão associados à progressão da doença. A neurotoxina 6hidroxidopamina (6-OHDA), é um análogo estrutural da catecolamina dopamina, servindo como um modelo de neurotoxicidade por mecanismos semelhantes ao observado na DP. O mecanismo de citotoxicidade atribuído a 6-OHDA está diretamente ligado com a produção de espécies reativas de oxigênio (EROs) oriundas da inibição da respiração mitocondrial e sua auto-oxidação. A busca por terapias alternativas como os antioxidantes tem crescido ao longo dos anos, buscando atenuar a progressão da DP através de compostos bioativos de plantas. Neste estudo buscou-se avaliar o efeito neuroprotetor de Anacardium microcarpum frente ao dano induzido pela neurotoxina 6-OHDA em fatias corticais de pintainhos. Fatias foram incubada por 2h na presença da neurotoxina e diferentes concentrações do extrato hidroalcoólico (AMHE) e frações acetato de etila (AMEAF) e metanólica (AMMF) de A. microcarpum. AMHE, AMMF e AMEAF (1-1000 µg/mL) não apresentaram citotoxicidade per se nas fatias corticais. AMMF e AMEAF restauraram a queda da viabilidade induzida por 6OHDA (500 µM) a partir da concentração de 100 µg/mL, sendo a AMMF nesta mesma concentração, capaz de reverter a peroxidação lipídica causada pelo composto. 6-OHDA aumentou a atividade de GST e TrxR e diminuiu a atividade da GPx, além de diminuir os níveis de GSH total e aumentar a razão GSH/GSSG. Tais efeitos não foram observados na presença de AMME. Ainda, 6-OHDA inibiu o complexo I da cadeia respiratória mitocondrial, sendo que a fração não reverteu este efeito. Além disso, a auto-oxidação de 6-OHDA não foi revertida pela planta. A fosforilação de p38, JNK1/2, ERK1/2 e AKT bem como clivagem de PARP foi avaliada frente ao tratamento com neurotoxina e fração metanólica. A fração não levou a aumentos significativos na fosforilação das MAPKs bem como na expressão destas, também não levou à clivagem da proteína PARP. Entretanto, na presença de fração e 6-OHDA houve aumento significativo na fosforilação de ERK1/2 sem alterar sua expressão. Averiguou-se o envolvimento de ERK1/2 e AKT, proteínas envolvidas nos mecanismos de sobrevivência, na neurotoxicidade induzida por 6-OHDA através do uso de inibidores. Observou-se que na presença de inibidor, o extrato não foi capaz de proteger contra o dano promovido por 6-OHDA. Nossos resultados sugerem que o extrato tem ação antioxidante contra o estresse oxidativo decorrente da inibição da respiração mitocondrial e auto-oxidação da neurotoxina, sem no entanto interferir nestes processos. Além disso, sugere-se que as proteínas anti-apoptóticas ERK1/2 e AKT estejam envolvidas no efeito neuroprotetor da fração por mecanismos ainda não conhecidos. Nossos dados mostram pela primeira vez a ação neuroprotetora de A. microcarpum frente ao dano neuronal induzido pela 6-OHDA em fatias cerebrais e / Parkinson's disease (PD) is a degenerative, chronic and progressive disease, which affects the central nervous system and it is responsible for degeneration of dopaminergic neurons. It is known that genetic and environmental factors such as exposure to agrochemical, oxidative stress and mitochondrial dysfunction are associated with progression of the disease. 6hydroxydopamine (6-OHDA) is a structural analogue of catecholamine dopamine, used as a model of neurotoxicity by similar mechanism in PD. The mechanism of cytotoxicity attributed to 6-OHDA is linked to the production of reactive oxygen species (ROS) from inhibition of mitochondrial respiration and its autoxidation. The search for alternative therapies such as antioxidants has grown over the years, seeking to mitigate the progress of PD through bioactive plant compounds. This study aimed to evaluate the neuroprotective effect of Anacardium microcarpum on the damage induced by neurotoxin 6-OHDA in cortical slices of chicks. Slices were incubated for 2 h in the presence of neurotoxin and different concentrations of hydroalcoholic extract (AMHE) and ethyl acetate (AMEAF) and methanol (AMMF) fractions of A. microcarpum. AMHE, AMMF and AMEAF (1-1000 μg/mL) did not show cytotoxicity per se in the cortical slices. AMMF and AMEAF restored the drop in viability caused by 6OHDA (500 μM) from the concentration of 100 μg/mL. 6-OHDA increased GST and TrxR activity while GPx activity and total GSH levels was decreased with an augmented ratio GSH / GSSG. These effects were not observed in the presence of AMMF and 6-OHDA. Furthermore, 6-OHDA inhibited the complex I of the mitochondrial respiratory chain but this effect was not reversed by fraction as well as the self-oxidation of 6-OHDA was not avoided by the plant. Phosphorylation of p38, JNK1/2, ERK1/2 and AKT as well as PARP cleavage was evaluated against treatment with neurotoxin and methanolic fraction. The methanolic fraction and 6OHDA did not alter phosphorylation of MAPKs, as well as expression of these proteins, not did it result in the cleavage of the PARP protein in the time studies. However, in the presence of fraction and 6-OHDA there was a significant increase in ERK1/2 phosphorylation without altering its expression. The involvement of ERK1/2 and AKT proteins in protective mechanism of fraction was analyzed through the use of inhibitors. It was observed that in presence of inhibitor, the extract was not able to protect against the damage promoted by 6-OHDA. Our results suggest that the extract presented antioxidant action against oxidative stress resulted from the inhibition of mitochondrial respiration and neurotoxin autoxidation. In addition, it is suggested that antiapoptotic proteins ERK1/2 and AKT are involved in neuroprotective effect of the fraction. Our data show for the first time a neuroprotective action of A. microcarpum against neuronal damage induced by 6-OHDA in cerebral slices and highlights the potential of this plant as a source of bioactive compounds with therapeutic potential

Page generated in 0.0319 seconds