• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la ténacité d'une soudure en undermatch : Application à la tenue mécanique de la jonction soudée FE en Al 6061-T6 / Toughness Study of an Undermatched Welded Joint : Application to the Mechanical Integrity of the Electron Beam Welded Joint of 6016-T6 Aluminium Alloy

Rekik, Wissal 17 November 2016 (has links)
Dans le cadre de la démonstration de l’intégrité des composants nucléaires les plus sensibles, une analyse de la présence d’un défaut potentiel de type fissure peut être requise par la sureté nucléaire. Ceci est particulièrement le cas en présence de jonctions soudées. Pour assurer un conservatisme de cette analyse, la position du défaut postulé doit être la plus pénalisante possible. Les analyses réalisées pour des démonstrations similaires sur des structures en acier reposent sur une approche de type mono matériau utilisant le comportement du métal de base. Cette approche est la plus pénalisante dans le cas d’une soudure en overmatch mais doit être remise en cause dans le cas d’une soudure en undermatch. Dans ce cadre, cette thèse propose une méthodologie expérimentale et numérique permettant l’identification de la configuration la plus pénalisante vis-à-vis de la mécanique de la rupture d’une soudure en undermatch. L’application de cette méthode a été réalisée sur une soudure en faisceau d’électrons en Al6061-T6. Un gradient de propriétés mécaniques le long de la jonction soudée a été dans un premier temps identifié permettant la conduite d’une analyse fine basée sur une approche multimatériau. Dans un second temps, le comportement en ténacité de la jonction soudée a été étudié sur éprouvettes CT. La transférabilité du paramètre J à l’amorçage à une autre géométrie d’éprouvette a été démontrée ce qui constitue une base importante pour l’hypothèse de transférabilité vers des structures. Pour finir, une étude numérique sur un tube de grandes dimensions avec un défaut semi-elliptique a été développée en prenant en compte les contraintes résiduelles de soudage. Les résultats montrent que la zone affectée thermiquement à 13 mm du centre de la soudure considérée est la plus sensible en mécanique de la rupture, ceci remet par conséquent en question les méthodes traditionnelles menées dans des analyses à la rupture brutale qui consistent à considérer un défaut dans la zone fondue. / For the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of undermatched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an undermatched welded joint. The methodology proposed is applied to an electron beam welded joint on Al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multimaterial approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone.
2

Vibration Assisted Drilling of Aluminum 6061-T6

Chang, Simon, Shuet Fung 03 1900 (has links)
<p> Burr formation is a frequent problem in metal cutting. Burrs, which are defined as undesired projections of material resulting from plastic deformation, affect the precision of machined components and can negatively affect the assembly process. One common burr is the exit burr that forms when drilling ductile materials such as aluminum alloy. Deburring, the process of removing burrs, can account for up to 30% of the total production cost. If the burr size can be reduced, the deburring effort can also be reduced or even eliminated, resulting in an improvement in productivity and an increase in profit. </p> <p> There are different methods to reduce burr formation in drilling. One method is known as vibration assisted drilling. Vibration assisted drilling has been reported as an effective method to reduce burr height without reducing the material removal rate or permanently altering the mechanical behavior of the workpiece material. Other reported benefits of vibration assisted drilling include improvement of tool life and better machined surface quality. However, it has been reported that poor choice of vibration conditions (frequency and amplitude) can increase burr height. No accurate analytical model exists in the current literature that can predict the exit burr height for vibration assisted drilling. To predict exit burr height, a model capable of predicting thrust force accurately is important because higher thrust force produces larger exit burr. Clearly there is a need to develop these models. </p> <p> This thesis presents the development of analytical models for predicting thrust force and exit burr height for vibration assisted drilling of aluminum 6061-T6. The developed models incorporate all significant characteristics of vibration assisted drilling to achieve accurate predictions. Drilling experiments were performed over a range of cutting and vibration conditions. The experimental results demonstrate that the developed thrust force model improves the accuracy by up to 45% in comparison to the existing vibration assisted drilling models. The developed burr height model accurately predicts the exit burr height for vibration assisted drilling, with an averaged deviation of 10% from the experimental results. The developed models are also applicable to conventional drilling. Comparing with the existing drilling models, the new models improve the accuracy of thrust force and burr height predictions by 6 and 36% respectively. A fast analytical method has also been developed that predicts the favourable vibration conditions that minimize burr height. The predictions obtained using this method are consistent with the experimental results. Drilling experiments for combined frequency vibration assisted drilling were also performed over a range of vibration conditions. The experimental results demonstrate that combining two different favourable vibration conditions together produces greater mean thrust force reduction than using a single frequency vibration assistance. </p> / Thesis / Doctor of Philosophy (PhD)
3

Friction Stir Welding in Wrought and Cast Aluminum Alloys: Microstructure, Residual Stress, Fatigue Crack Growth Mechanisms, and Novel Applications

Chenelle, Brendan F. 26 January 2011 (has links)
Friction Stir Welding (FSW) is a new solid-state welding process that shows great promise for use in the aerospace and transportation industries. One of the primary benefits of this process is that mechanical properties of the base material are not as severely degraded as they are with conventional fusion welding. However, fatigue crack initiation and growth properties of the resulting weld nugget are not fully understood at this time. The primary goal of this project is to characterize the fatigue crack growth properties of friction stir welds in 6061-T6 aluminum as relates to the microstructural evolution of the weld. This was accomplished by producing friction stir welds and testing fatigue crack growth response in different crack orientations with respect to the weld. In addition, residual stress measurements were conducted for all cases, using both the crack compliance and contour methods. The results from the methods were compared in order to evaluate the accuracy of each method. Being an immature technology, the potential for discovery of new applications for the FSW process exist. With this in mind, novel applications of the FSW process, including the addition of particles during welding were explored. The first step was the investigation of property changes that occur when secondary cast phases are refined using the FSW process. The FSW process successfully refined all secondary phases in A380 and A356, producing an increase in hardness. Next, methods for the creation of particle metal matrix composites using FSW will be investigated. Nano-scale alumina particles were successfully added to the matrix and homogenously distributed. Using multiple weld passes through the composite was found to increase the uniformity of particle distribution. However, the alumina particle composite failed to provide any statistically significant hardness increase over the base material. The FSW process was also evaluated for weldability of traditionally difficult alloy systems. FSW was found to show very good weldability for dissimilar cast and wrought alloys, as well as for high-pressure die castings. Lastly, the feasibility of friction stir welding/processing in repairing crack defects in complex structural members in combination with cold-spray technology was determined. Friction Stir processing was used on a cold spray 6061-T6 block, resulting in significant increases in hardness over the base material, as well as a reduction in porosity. In addition, FSP was shown to eliminate crack-type defects in cold spray materials, a finding that has important applications in part repair. The deliverables of this work include an understanding of the fatigue crack growth response of FSW/FSP 6061-T6, as well as a feasibility study exploring novel uses for the FSW/FSP process. In addition, the deliverables include CNC code, fixtures, procedures, and analytical code for the creation and analysis of FSW/FSP joints. This will be important for the continuation of FSW/FSP work at WPI.
4

Novel design and optimization of vehicle's natural gas fuel tank

Chen, Shr-Hung January 1997 (has links)
No description available.
5

Etude des évolutions microstructurales sous irradiation de l'alliage d'aluminium 6061-T6 / Study of microstructural evolutions of the 6061-T6 aluminium alloy under irradiation

Flament, Camille 01 December 2015 (has links)
L’alliage d’aluminium 6061-T6 a été choisi comme matériau de structure du casier et du caisson du cœur de réacteur Jules Horowitz (RJH). Transparent aux neutrons, il doit ses bonnes propriétés mécaniques à la précipitation de fines aiguilles nanométriques appelées béta'' contenant Mg et Si et à la présence de dispersoïdes Al(Cr,Fe,Mn)Si jouant un rôle important dans la résistance à la recristallisation. Le caisson et le casier seront soumis à de forts flux neutroniques à une température avoisinant les 50°C. L’objectif de cette thèse est d’étudier les évolutions microstructurales de l’alliage sous irradiation et plus particulièrement la stabilité des précipités. Pour cela, des études analytiques par irradiations in-situ et ex-situ aux électrons et aux ions à température ambiante et forte dose ont été réalisées ainsi qu’une étude du comportement des précipités sous irradiations aux neutrons à faible dose. La caractérisation fine des précipités par Microscopie Electronique en Transmission a montré que les dispersoïdes sont stables sous irradiation, cependant ils présentent une structure cœur/coquille avec un cœur riche en (Fe, Mn) et une coquille riche en Cr qui s’accentue sous irradiation par accélération de la diffusion. En revanche, les nano-phases type béta’’ sont déstabilisées par l’irradiation. Elles sont dissoutes par irradiation aux ions au profit de l’apparition d’amas riches en Mg, Si, Al, Cu et Cr participant à l’augmentation du durcissement de l’alliage, tandis qu’elles tendent à se transformer en précipités cubiques sous irradiation aux neutrons. / The 6061-T6 Aluminium alloy, whose microstructure contains Al(Fe,Mn,Cr)Si dispersoids and hardening needle-shaped beta” precipitates (Mg, Si), has been chosen as the structural material for the core vessel of the Material Testing Jules Horowitz Nuclear Reactor. Because it will be submitted to high neutron fluxes at a temperature around 50°C, it is necessary to study microstructural evolutions induced by irradiation and especially the stability of the second phase particles. In this work, analytical studies by in-situ and ex-situ electron and ion irradiations have been performed, as well as a study under neutron irradiation. The precipitates characterization by Transmission Electron Microscopy demonstrates that Al(Fe,Mn,Cr)Si dispersoids are driven under irradiation towards their equilibrium configuration, consisting of a core/shell structure, enhanced by irradiation, with a (Fe, Mn) enriched core surrounded by a Cr-enriched shell. In contrast, the (Mg,Si) beta” precipitates are destabilized by irradiation. They dissolve under ion irradiation in favor of a new precipitation of (Mg,Si,Cu,Cr,Al) rich clusters resulting in an increase of the alloy’s hardness. beta’’ precipitates tend towards a transformation to cubic precipitates under neutron irradiation.
6

Studies On Friction Stir Welding Of Precipitation Hardenable Aluminium Alloys

Kumar, K 01 1900 (has links)
Friction Stir Welding (FSW) is an emerging solid state welding process. It has been a proven method for welding high strength aluminium alloys which were previously not recommended for conventional fusion welding. Since the invention of the process by The Welding Institute, United Kingdom, in 1991, a number of studies have been conducted on the material flow, microstructural evolution and mechanical properties of friction stir welds. However, there is not enough conceptual background available on FSW process for physical understanding of the mechanism of weld formation. In addition to that, FSW welds of high strength precipitation hardenable aluminium alloys suffer from reduced joint efficiency due to overaging in the heat affected zone. In the present investigation, experimental analysis has been carried out to understand the mechanism of weld formation and parameter optimization for aluminium alloys 7020-T6 and 6061-T6. For this purpose the investigations have been made on both the process aspects and the material aspects. The process aspects are analyzed with the objective of learning the mechanism to produce defect free welds. For this purpose experiments have been carried out to analyze the effect of FSW parameters, material flow and the frictional characteristics between the tool and base metal. Preliminary experiments are conducted on aluminium alloy 7020-T6 with different tool geometries to analyze the interaction of the tool with the base metal using a knee-type vertical milling machine. Then, the tool geometry which produced defect-free weld is used for further experimentation. The role of tool pin, shoulder and axial load on the formation of defect free weld is analyzed in an innovative experiment, where the tool and base metal interaction is continuously increased by continuously increasing the interference between the tool and base metal. In another experiment the initial abutting interface position with respect to the tool is continuously varied to study the interaction of the tool with the initial interface and to find the positional information where the initial interface is completely eliminated. Further, the tool metal interface condition is studied using a specially designed tribological experiment which simulates the FSW condition. From the base metal point of view, due to the strain, strain rate and temperature imposed on the base metal during the process, the microstructure is altered. In precipitation hardenable aluminium alloys the strengthening precipitates are dissolved or overaged in the weld region depending on the peak temperature in the region, which reduces the joint efficiency. However, the dissolution and overaging are kinetic process. In order to analyze this time dependant softening behavior of the base metal 7020-T6 and 6061-T6, isothermal annealing and differential scanning calorimetric studies are performed. In order to obtain FSW welds with maximum joint efficiency, the welding temperature should not exceed the “softening temperature” of the base metal. But, to produce defect free welds favorable material flow in the weld nugget is necessary. The material flow and consolidation depend on the process temperature. Hence, for a given tool to produce defect free weld there is a need for minimum temperature. If the weld formation temperature is less than the base metal softening temperature, the weld can be made with 100% joint efficiency. In order to optimize the FSW parameter which gives defect free weld with lowest possible temperature, an instrumented programmable FSW machine is designed and developed. The machine is designed in such a way that welding parameters – rotation speed, traverse speed and plunging depth – can be continuously varied from the start to end of the weld between given two values. This reduces the number of experimental trials, material and time. Based on the experimental results the following conclusions are derived. 1.The minimum diameter of the pin required for FSW depends on the base metal and tool material property for a given set of parameters. If the pin diameter is insufficient for a given set of welding parameters, it fails during plunging operation itself. 2.There is a minimum diameter of the shoulder for a given diameter of the pin which produces defect free weld. The ratio of pin to shoulder to produce a defect free weld is not a constant value. It changes with tool geometry and process parameters. 3.Increasing the area of contact between the tool and shoulder for a given set of parameters increases the heat input and results in increased weld nugget grain size. 4.Initial abutting interface of the base metal is eliminated at the leading edge of the tool. However, new surfaces are generated due to interaction with the tool and the newer surfaces are consolidated at the trailing edge of the tool. Importantly, the weld strength is controlled by the defects generated due the improper elimination of newly generated surfaces. 5.Optimal axial load is required to generate the required pressure to consolidate the transferred material at the trailing edge of the tool and should be equal to the flow stress of the material at the processing temperature. The optimal axial load is 8.1kN for a tool having 20mm diameter shoulder with 6mm diameter frustum shaped pin. 6.Only the material that approaches the tool at the leading edge on the advancing side is stirred and the remaining material is simply extruded around the tool. Further, the initial abutting interface is completely removed only when it is located in the stirring zone, otherwise the initial abutting interface is not eliminated. In the present study the interface is completely stirred when it is located on the advancing side of the tool between 0.5mm away from the centerline and edge of the tool. 7.The temperature and pressure at the tool–base metal interface is above the temperature and pressure required for seizure to occur for given tool material (H13) and base metal (7020-T6). Hence, it is clear that during FSW the base metal transfers on to the tool and interaction occurs between transferred layer on tool and base metal. The coefficient of friction between the given tool material and base metal in FSW condition is in the range of 1.2 – 1.4. 8.The minimum temperature requirement for FSW of 7020-T6 is 400oC and 6061-T6 is 430oC. However, 7020-T6 and 6061-T6 softens at lower temperatures than that of the minimum FSW temperature. 7020-T6 softens 30% in 7min at 250oC, 4min at 300oC, 2min at 350oC and 1min at 400oC. After softening 30%, there is 10% recovery in hardness and the hardness remains constant thereafter. Whereas 6061-T6 softens gradually up to 47% in 7min at 350oC and 400oC, below the temperature of 250oC for 7020-T6 and 350oC for 6061-T6 there is no softening observed in 7min. 9.The maximum joint efficiency of the 7020-T6 weld is 82% and 6061-T6 weld is 60%. 10. The reduction in joint efficiency is attributed to overaging of the material in the heat affected zone.
7

The Effect of Surface Corrosion Damage on the Fatigue Life of Extruded Aluminum Alloy 6061-T6

Weber, Matthew 01 January 2014 (has links)
Aluminum alloy 6061-T6 is a common engineering material used in aerospace, automotive, structural applications. Despite its wide use, little has been published about the effects of damage from surface corrosion on its fatigue life. An investigation was performed where 6061-T6 extrusions were exposed to a 3.5% NaCl solution at pH 2 for 2 days and 24 days. The length of time and pH were chosen in order to create distinct surface flaws. The effect of these flaws on the fatigue life was then investigated and analyzed using scanning electron microscopy (SEM) and Weibull statistics. It was determined that samples corroded for both 2-days and 24-days exhibit fatigue lives that can be described using a 3-parameter Weibull distribution. The result of which was the determination of a threshold value for fatigue as well a general understanding of flaw geometry.
8

A Framework for Enhancing the Accuracy of Ultra Precision Machining

Meyer, Paula Alexandra 07 1900 (has links)
This thesis is titled "A Framework for Enhancing the Accuracy of Ultra Precision Machining." In this thesis unwanted relative tool / workpiece vibration is identified as a major contributor to workpiece inaccuracy. The phenomenon is studied via in situ vibrational measurements during cutting and also by the analysis of the workpiece surface metrology of ultra precision diamond face turned aluminum 6061-T6. The manifestation of vibrations in the feed and in-feed directions of the workpiece was studied over a broadband of disturbance frequencies. It is found that the waviness error measured on the cut workpiece surface was significantly larger than that caused by the feed marks during cutting. Thus it was established that unwanted relative tool / workpiece vibrations are the dominant source of surface finish error in ultra precision machining. By deriving representative equations in the polar coordinate system, it was found that the vibrational pattern repeats itself, leading to what are referred to in this thesis as surface finish lobes. The surface finish lobes describe the waviness or form error associated with a particular frequency of unwanted relative tool / workpiece vibration, given a particular feed rate and spindle speed. With the surface finish lobes, the study of vibrations is both simplified and made more systematic. Knowing a priori the wavelength range caused by relative tool / workpiece vibration also allows one to extract considerable vibration content information from a small white light interferometry field of view. It was demonstrated analytically that the error caused by relative tool / workpiece vibration is always distinct from the surface roughness caused by the feed rate. It was also shown that the relative tool / workpiece vibration-induced wavelength in the feed direction has a limited and repeating range. Additionally, multiple disturbance frequencies can produce the same error wavelength on the workpiece surface. Since the meaningful error wavelength range is finite given the size of the part and repeating, study then focussed on this small and manageable range of wavelengths. This range of wavelengths in turn encompasses a broadband range of possible disturbance frequencies, due to the repetition described by the surface finish lobes. Over this finite range of wavelengths, for different machining conditions, the magnitude of the waviness error resulting on the cut workpiece surface was compared with the actual relative tool / workpiece vibrational magnitude itself. It was found that several opportunities occur in ultra precision machining to mitigate the vibrational effect on the workpiece surface. The first opportunity depends only on the feed rate and spindle speed. Essentially, it is possible to force the wavelength resulting from an unwanted relative tool / workpiece vibration to a near infinite length, thus eliminating its effect in the workpiece feed direction. Further, for a given disturbance frequency, various speed and feed rate combinations are capable of producing this effect. However, this possibility exists only when a single, dominant and fixed disturbance frequency is present in the process. By considering the tool nose geometry, depth of cut, and vibrational amplitude over the surface finish lobe finite range, it was found that the cutting parameters exhibit an attenuating or filtering effect on vibrations. Thus, cutting parameters serve to mitigate the vibrational effect on the finished workpiece over certain wavelengths. The filter curves associated with various feed rates were compared. These filter curves describe the magnitude of error on the ultra precision face turned workpiece surface compared with the original unwanted tool / workpiece vibrational magnitude. It was demonstrated with experimental data that these filter curves are physically evident on the ultra precision diamond face turned workpiece surface. It was further shown that the surface roughness on the workpiece surface caused by the feed rate was reduced with relative tool / workpiece vibrations, and in some cases the feed mark wavelength was changed altogether. Mean arithmetic surface roughness curves were also constructed, and the filtering phenomenon was demonstrated over a broadband of disturbance frequencies. It is well established that a decrease in the feed rate reduces the surface roughness in machining. However, it was demonstrated that the improved surface finish observed with a slower feed rate in ultra precision diamond face turning was actually because it more effectively mitigated the vibrational effect on the workpiece surface over a broadband of disturbance frequencies. Experimental findings validated this observation. By only considering the effect of vibrations on the surface finish waviness error, it was shown that the workpiece diamond face turned with a feed rate of 2 {tm / rev has a mean arithmetic surface roughness, Ra , that was 43 per cent smaller than when a feed rate of 10 μm / rev was used. / Thesis / Doctor of Philosophy (PhD)
9

Critical Erosion/Corrosion Piping Wall Thicknesses Under Static and Fatigue Stress Conditions According to ASME Guidelines

Comeau, Christian R. 08 October 2001 (has links)
The purpose of this project was to show the updated procedures and to make additions to the computer program called Tmin designed by E. I. DuPont De Nemours and Company. This program is used as a screening tool for determining the largest of the minimum pipe-wall thicknesses in a piping system. This project involved several additions that will be released in the next version of the Tmin computer program. The first major additions to be implemented are four alternating Stress-to-Number of cycles curves: Aluminum 1100, Aluminum 3003-0, Aluminum 6061-T6, and Nickel 200. In addition, procedures of the ASME for fatigue curve analysis and implementation of fatigue data were investigated. These four stress-to-number of cycles (S-N) fatigue curves were added to Tmin's internal Microsoft Access® database. Next, a 2-D vertical piping span configuration was incorporated. Finally, DuPont required a Microsoft Word® document output of the pipe-wall thickness data including the piping span model information. Other user-friendly additions were included. Since this computer program was to be American Society of Mechanical Engineers (ASME) compliant, a study of the ASME Pressure Vessel and Piping standards and codes was made to determine how pipe-wall thickness calculations were to be processed. The 2-D vertical piping span calculation procedures were investigated. Once the 2-D vertical piping span analysis was complete, the largest pipe-wall thickness value calculated were passed to a Microsoft Word® document. The last implementation is the inclusion of help files. Help file button additions in all input boxes allowed for the user to know exactly what was needed before a data entry was made. / Master of Science

Page generated in 0.0246 seconds