• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 531
  • 172
  • 137
  • 135
  • 135
  • 24
  • 24
  • 22
  • 21
  • 20
  • 16
  • 15
  • 14
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Compaction and sintering of ceramic powders

Ozkan, Necati January 1994 (has links)
This Thesis describes a study of the compaction and the sintering of ceramic powders within the context of their "near net shape forming" into dense bodies. The operation of near net shape forming is the manufacture of ceramic parts with a required external dimensional tolerance combined with a defect free internal microstructure. The current study considers these requirements by focusing upon the fundamental facets of near net shape forming operations. The effects of the processing and material parameters on the compaction behaviour of agglomerated alumina powders have been investigated experimentally. It has been shown that the green compacts, formed from the agglomerated alumina powders by the uniaxial die pressing technique, possess certain density distribution patterns due to the frictional forces during the compaction process, and these density distributions depend primarily upon the properties of the agglomerates and the lubrication state of the die wall. The density distributions in the green compacts have been determined experimentally using the coloured layer technique and predicted using a first order model. Due to the inhomogeneous density distributions in the green compacts, the shrinkage of the compacts was not homogeneous. As a result, the shapes of the sintered compacts were not geometrically linear scaled replicas of the green compacts and the shape distortions in the sintered compacts have been characterised. It has been shown that there is a relationship between the extent of the shape distortions and the density distributions in the green compacts; that is, the more inhomogeneous green compacts the more is the shape distortions in the resulting sintered compacts. Sintering and grain growth equations, modified from established relationships, have been used for the sintering simulations in order to predict both the progression of the density and grain size of the sintered compacts. In order to predict the overall shape of the sintered compacts, a first order model has been developed by combining the predicted density distributions in the green compacts and the predicted density of the sintered compacts. The extent of the shape distortions have been reduced by optimising the properties of the agglomerates and the state of the die wall lubrication condition.
502

The erosion of polycrystalline liquid-phase sintered aluminas by solid particle impact

Roberts, Nia January 1991 (has links)
No description available.
503

The influence of fabrication effects on the strength of fired clay products

Bogahawatta, Vedananda Tilakasiri Loku January 1990 (has links)
A study has been made of the enhancement of the mechanical strength of bricks fabricated from five Sri Lankan Quaternary and post-Quaternary brick clays with the objective of identifying and optimising those factors which control the quality and performance characteristics of fired clay products of this type. Mineralogical investigations have shown that the clays are predominantly kaolinitic. Of the accessory minerals, feldspars and gibbsite are the chief constituents. The experimental programme involved the development of feasible processing techniques for clay bodies, the establishment of optimum heat treatments for their firing, and the testing and evaluation of material properties of the fired products. The microstructures of fired materials have been characterized using optical and electron microscopical techniques, as well as X-ray diffraction, electron probe microanalysis and chemical analysis. A limited study was also made of the durability of laboratory fired specimens. Methods of strength enhancement included use of the reactions of phosphates with natural clays, use of mineralizers to induce mullitization and surface coating by an efflorescence process. A kinetic analysis based on the first order kinetics is proposed for the estimation of optimum firing conditions for kaolinitic clays. The study has shown that surface coating of bricks increases the load at the elastic limit by up to 30% and the ultimate failing load by 19% in the clays examined. The measured increases in modulus of rupture and modulus of elasticity are over 33% and 40% respectively. A fabrication technique which requires the incorporation of phosphates has been developed. This provides the possibility of lowering the peak temperature of firing to 500°C. Flexural strength increase of up to 60% over the normally fired unbonded specimens can be achieved using this technique. Relevant compatibility relations in the ternary system Si02- P205-AI203 at 500'C are proposed. The presence of an optimum amount of mineralizer in a clay body may alter its sintering characteristics resulting in an increase in modulus of rupture up to 55%. However, uncontrolled additions exceeding 4 wt% cause deleterious effects. Microstructural analysis provides evidence that liquid phase sintering, development of mullite, development of pores and bloating are the dominant strength determining features in these clays. An empirical equation correlating the functional relation between modulus of rupture, mullite content and porosity is proposed. Mechanisms of strength development are discussed in the light of these findings.
504

A provincial school of art and local industry : the Stourbridge School of Art and its relations with the glass industry of the Stourbridge district, 1850-1905

Measell, James Scott January 2016 (has links)
Founded in 1851, the Stourbridge School of Art offered instruction in drawing, art and design to students engaged in industries, especially glass. Using social history methodology and primary sources such as Government reports, local newspapers and school records, this thesis explores the school’s development from 1850 to 1905 and explicates its relationships with the local glass industry. Within the context of political, economic, social and cultural forces, the school contributed to the town’s civic culture and was supported by gentry, clergy and industrialists. The governing Council held public meetings and art exhibitions and dealt with management issues. Working class men attended evening classes. Women from wealthy families attended morning classes. This thesis argues that a fundamental disconnect existed between the school’s purpose (art instruction to train designers) and its instruction (basic drawing and fine art). The school enrolled men employed in glass decorating but few from glass manufacturing. Classes reflected the South Kensington curriculum, and the art masters were unaware of the design needs of industry. Glass manufacturing firms provided modest financial support but did not encourage employees to attend, creating frustration for the Council. In contrast, similar schools in Brierley Hill and Wordsley were well-supported by the glass industry.
505

Standardisation of flexure testing of engineering ceramics

Chen, Jay-San January 2000 (has links)
With the increase in usage of engineering ceramics, a new industrial standard is required in order to evaluate its properties and to perform a fair and just trade. The thesis investigates the faults and omissions of existing work and judges today's requirements thereby constructing a framework with which today's and future standards in flexure testing can be based. The draft standard presented in this thesis covers the three major testing methods for determining the biaxial flexural strength (modulus of rupture) of engineering ceramics. The ring-on-ring, ball-on-ring, and 4-Ball test fixtures were all adopted as standard, since it is known that each of these systems is suited for a particular application and each has different advantages and disadvantages. The three major biaxial test methods prescribed in this draft standard have been devised so that more consistent and accurate test results can be obtained. However, the uncertainty of measurement in flexure testing always exists and needs to be estimated. The estimation of uncertainty in flexure testing in this study is based on the methodology provided in the ISO Guide to the expression of uncertainty in measurement. The results of the estimation showed that the uncertainty in measurement for the biaxial flexure test standard proposed in this thesis is very low compared to the inherent variability of the strength of ceramic materials. It was also found that the applied load, thickness of the disc plate, and random effects are the three major components contributing to the overall uncertainty. The total uncertainty of measurement in biaxial flexure testing can be significantly minimised by the reduction of the uncertainty contributed from these components, especially from random effects.
506

Optical micro-resonators in chalcogenide glass

Elliott, Gregor Robert January 2009 (has links)
This thesis focuses on the production of gallium lanthanum sulphide (GLS) microspheres and their potential uses. Microspheres, and micro-resonators in general, have attracted considerable attention because of their promise in all-optical-switching, micro-lasers, multiplexers and many other applications. In this thesis, several applications have been investigated, culminating in the demonstration of laser action in a neodymium doped GLS microsphere. The possibility of using microspheres as ball lenses has been investigated and shown to be possible. Laser action was observed in a neodymium doped GLS microsphere. The laser had a threshold of 83mW of incident pump power, with a peak at 1082nm and a line width of <0.05nm
507

Chemically-modified hafnium diboride for hypersonic applications : synthesis and characterisation

Zheng, Pengxiang January 2016 (has links)
Hypersonic flight at a speed greater than Mach 5 (1715 ms-1) requires materials that can withstand temperatures up to 3000°C, high heat flux, rapid heating and disassociated reactive oxygen in the extreme environment of space and during re-entry. A number of advanced ceramic materials have melting points over 3000°C, of which the refractory metal carbides and borides are of main interest due to their excellent thermal conductivity from room temperature to over 2500°C, good chemical stability and ablation resistance at high temperatures. These materials are classified as ultra-high-temperature ceramics (UHTCs). Among the family of UHTCs, ZrB2 and HfB2 are reported as the most promising candidates to be used as thermal protection systems (TPS) for the nose tip and sharp leading edges. However, the issue of using monolithic ZrB2 and HfB2 is the phase transformation of ZrO2 and HfO2 oxide by-products at elevated temperature, leading to a volume change that results in cracking of the formed oxide scale. Hence, it is necessary to use dopants to stabilize the oxidation products of ZrB2 and HfB2 in-situ and to minimise the transformation induced cracking and thus improving the oxidation resistance. This research is focused on introducing dopants, such as Y and Ta into HfB2 and to understand its effect on the oxidation behaviour of HfB2 based UHT ceramics. The primary objectives were to: (a) Synthesize sub-micron pure and doped HfB2 powders; (b) Sinter the HfB2 based ceramics to achieve relative density > 95% (i.e. with close porosity); (c) Assess the effect of dopants on the oxidation resistance of HfB2 ceramics at high temperatures. Sub-micron pure HfB2 powder of ~200 nm was synthesized by a modified sol-gel approach combined with subsequent carbothermal reduction process using hafnium tetrachloride, boric acid, and phenolic resin as the starting materials. HfC and residual carbon were found to be the main impurity phase, owing to the lack of removal of carbon-containing species in the argon atmosphere during the heat treatment. Therefore, a precipitation approach was developed to transfer hafnium tetrachloride into hafnium hydroxide during the mixing stage to get rid of the Cl- and carbon-containing functional groups. Based on the detailed study of the formation mechanism of HfB2, it was found that the particle size of the HfB2 powders was decided by the particle size of the starting Hf source. Although the powders were slightly coarser (~400-800 nm) from the precipitation approach, importantly phase-pure HfB2 was formed at the same furnace heating conditions (1600°C/2 hrs). The precipitation method was also used to prepare doped HfB2 powders as the homogeneity of the dopants (TaB2, Y2O3) could be improved by controlling the pH values at ~8.5 to achieve the simultaneous precipitation of the dopants and HfB2 precursors. As a result, (Hf,Ta)B2 solid solution was prepared successfully at the temperature of 1600°C. Spark plasma sintering (SPS) was used to densify the pure and doped HfB2 powders. The optimized density achieved was around 97% at 2150°C without the use of any sintering aids and the addition of TaB2 slightly improved the sinterability of the HfB2 based powders due to the formation of the (Hf,Ta)B2 solid solution. The sintered density of commercial micron HfB2 powders (Treibacher) was only 94% in the same condition, and the resultant grain size (5-10 μm) is also significantly larger than that from synthesized HfB2-based ceramics (2-6 μm). The oxide impurities, such as HfO2 and B2O3, on the surface of the fine HfB2 based powders were attributed as the main reason for inhibiting further densification. The oxidation behaviours of the HfB2 based ceramics were investigated via both static oven oxidation and oxyacetylene torch testing. In low and intermediate temperature regime ( < 1600°C), it was indicated that the addition of dopants didn't significantly improve the oxidation resistance as the glassy B2O3 was the critical factor controlling the oxygen permeation rate. However, in the high-temperature regime ( > 1600°C), it was found the oxidation product was mainly tetragonal HfO2, which was stabilized by the Ta-dopants at temperatures well below the HfO2 phase transformation temperature. Therefore, the cracking and volume change due to phase transformation can be avoided and in return, oxidation resistance was improved at high temperature, which should be beneficial for the application of these materials in hypersonic aviation.
508

Wet steam drying: Microwave-assisted droplet evaporation in open-cell ceramic foams

Camacho Hernandez, Jesus Nain 13 December 2023 (has links)
In many energy and process engineering systems where fluids are processed, droplet-laden gas flows may occur. As droplets are often detrimental to the system’s operation, they are required to be removed. According to the state-of-the-art, industrial droplet removal is achieved through a sequential arrangement of several separators followed by droplet collection and discharge. This results in a high-quality gas stream, yet at the expense of bulky and expensive systems that are difficult to retrofit to existing facilities. In addition, the multiple sequential separators produce high pressure drops, further increasing operating costs. Alternatively, a single droplet separation stage and in situ evaporation would provide compact solutions for facilities. However, compact engineering solutions for the removal of entrained droplets are difficult to achieve with conventional flow control and conduction heat transfer approaches such as Joule heating. Joule heating requires a well-defined and homogeneous electrical resistance to ensure uniform heating, which is technically challenging to apply in fine separators and thus compact removal devices are hence often costly and ineffective. Therefore, it becomes necessary to investigate alternative heating approaches to overcome these challenges, such as volumetric heating using microwaves. The research conducted in this thesis aims to analyze the potential of a compact microwave solution approach for droplet removal. The compactness of the approach relies on a novel fine separator structure enhanced by microwave-heat transfer for efficient in-flow droplet evaporation. The investigation targets at fundamental studies of the combined effect of droplet flow filtering and heat transfer from numerical calculations and experimentation. As novel fine separators, solid open-cell foams are a promising alternative for the separation of liquid droplets suspended in gas flows at comparably low pressure drops. Using susceptors, such as dielectric materials, for the skeleton and exposing them to microwaves is an efficient way to use them as heating elements. Silicon carbide (SiC) based open-cell foam samples were considered for the study as they are good susceptor materials. First, pore-scale fluid numerical simulations on representative foam models were used to obtain a deeper insight into the effects of pore size and pore density on the droplet retention time within foams. Numerical findings were reported considering the pressure gradient and the residence time distribution of droplets under different superficial flow velocities, droplet sizes, porosities and pore densities. Next, the temperature-dependent permittivity of SiC-based foam materials was determined by the cavity perturbation technique using a waveguide resonator at a microwave frequency of 2.45 GHz up to 200 °C. The permittivity was of particular interest as it is a crucial parameter for predicting and designing systems utilizing microwave heating. Along the permittivity measurements, electromagnetic wave propagation simulations were used to derive novel mixing relations describing the effective permittivity of foams while considering their skeletal morphology. The derived relations facilitate an efficient and reliable estimation of the effective permittivity of open-cell foams, producing good agreement to experimental data. Using the foams dielectric properties and the fluid characteristics of droplet-laden streams, a microwave applicator was designed to concentrate the electric field on the open-cell foams. The applicator was constructed for carrying out experimental studies on droplet evaporation removal under different flow velocities, microwave power and different SiC-based foams. Measurements of droplet size, velocity, number density and flux at the inlet and outlet streams of the applicator were performed using a 2D-phase Doppler interferometer. Eventually, it was found from the experimental data analysis that the application of open-cell ceramic foams as a filter medium reduced 99.9 % of the volumetric flow of droplets, while additional microwave exposure increased the reduction to 99.99 %. In addition, microwave-heated foams prevent droplet re-entrainment and structure-borne liquid accumulation within foams, thus avoiding water clogging and flooding. Hence, open-cell foams can be used as fine droplet separators as long as microwave heating may effectively evaporate accumulations of liquid. An important factor in designing future devices based on this microwave heating approach is the temperature, as it changes the arcing breakdown voltage of the gas, thus limiting the microwave input power and droplet flow velocity. Although more investigations are needed to develop an applicable and optimal product, the results presented in this thesis provide a first insight into the viability of using microwave heating and fine filtering as a compact solution for droplet removal.
509

A new bottle design to correct mechanical defect during feeding in cleft lip and palate babies

Salem Althalab, Fatemah January 2011 (has links)
Babies with cleft lip and palate which is a common craniofacial deformity suffer from feeding problem which interfere with their growth and development and render the subsequent corrective surgery and also endure their daily suffering during the feeding time. This thesis reports the design of anew bottle feed to overcome this problem. Also a clinical study was preformed to study the patterns of baby feed in cleft lip and palate babies to support the use of the bottle feeding for this group of babies.
510

Transparent, rare earth doped, oxyfluoride glass-ceramics for photonics

Kukkonen, Liv Linnea January 2000 (has links)
No description available.

Page generated in 0.039 seconds