• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réalisation d'un micro-robot autonome, inspiré du contrôle de vistesse et d'évitement d'obstacles observés chez l'abeille. / Design of an autonomous micro-robot inspired from the speed control and obstacle avoidance observed on honeybees

Roubieu, Frederic 16 July 2013 (has links)
Cette thèse présente l'implémentation d'une stratégie visuelle bio-inspirée sur un aéroglisseur miniature totalement actionné, qui lui permet de naviguer dans le plan horizontal d'un tunnel inconnu. L'élaboration de ce pilote automatique, nommé LORA, fait suite aux études éthologiques menées sur l'abeille depuis ces dernières décennies et nous ont amené à énoncer le principe de la régulation du flux optique pour le contrôle du vol de croisière. Ce pilote automatique est un double régulateur de flux optique latéral constitué de deux boucles visuo-motrices interdépendantes contrôlant conjointement la vitesse d'avance et la position du robot par rapport aux obstacles sans avoir à mesurer ou estimer aucun de ces paramètres. La clé de voûte de ce système de guidage est une troisième boucle destinée à maintenir le cap grâce à un micro-gyromètre et un micro-compas magnétique permettant au robot d'effectuer des mouvements de translation qui génèrent sur son œil composé artificiel du flux optique de translation, seul dépendant du ratio vitesse/distance aux obstacles. Cet œil estime le flux optique grâce à ses deux ou quatre Détecteurs élémentaires de mouvement (total de 4 ou 8 pixels). L'aéroglisseur est alors capable de franchir sans collision, à la manière d'une abeille, divers tunnels : droit, fuselé ou présentant une pente, un virage, une absence de texture sur un mur ou même une zone non-stationnaire. Cette stratégie visuelle bio-inspirée fournit non seulement une solution de navigation élégante à destination de robots totalement actionnés mais elle permet aussi d'expliquer comment une abeille de 100mg peut naviguer sans l'aide de SONAR, RADAR, LIDAR, ou GPS. / In this work, we present for the first time a bio-inspired motion vision-based navigation strategy embedded on a miniature fully-actuated hovercraft allowing it to navigate safely on the horizontal plane of an unknown corridor. The design of this autopilot, called LORA, follows the ethological findings made on honeybees these last decades, which led us to elaborate the principle of the optic flow regulation which might be used by insects to control their flight. The bee-inspired LORA autopilot is a dual optic flow regulator which consists in two intertwined visuomotor feedback loops which control jointly the forward speed of the robot and its clearance to the obstacles. The keystone of this bio-inspired guidance system is a heading-lock system enabling the robot to move in translations and therefore experience a purely translational optic flow which depends only on the ratio speed/clearance to obstacles thanks to a micro-gyrometer and a micro-magnetic compass. The estimation of optic flow is made by a minimalist compound eye, made of two or four Elementary Motion Detectors (only 4 or 8 pixels). The hovercraft is therefore able to cross without crashing a straight or a tapered corridor, presenting a frontal sloping terrain, a bend, a textureless wall, or even a non-stationary section by automatically adapting both its forward speed and its clearance to the walls imitating the honeybee. This bio-inspired visual strategy not only provides an elegant navigation solution in an unknown environment aimed to equip fully-actuated miniature vehicles but also to explain how a 100mg honeybee can navigate with few computational ressources, i.e., without any SONAR, RADAR, LIDAR or GPS.
2

Conception et réalisation d'un drone hybride sol/air autonome / Design and construction of an autonomous hybrid ground/air drone for indoor applications

Thorel, Sylvain 14 November 2014 (has links)
Ce travail est dédié au contrôle non linéaire d'un drone de type quadricoptère dont la spécificité est de pouvoir voler aussi bien que se déplacer en glissant sur le sol, à la façon d'un aéroglisseur. Dans un contexte d'exploration autonome de bâtiment, ce concept hybride permet d'économiser les batteries lorsqu'il n'est pas nécessaire de voler puisque le drone profite des surfaces planes pour se déplacer sans avoir à compenser la gravité ; il peut ainsi prolonger l'autonomie au-delà de la vingtaine de minutes typique d'un quadricoptère classique. Contrairement aux véhicules terrestres à roues, les capacités de franchissement de notre drone sont fortement augmentées car son aptitude au vol l'autorise à éviter les obstacles, à changer d'étage ou passer par une fenêtre. L'étude menée ici concerne essentiellement le déplacement surfacique de ce drone hybride, et vise à concevoir et implémenter une loi de contrôle capable d'asservir ce système sur des trajectoires planes au sol. Ce drone terrestre est similaire à un système sous actionné de type glisseur ; le problème de la stabilisation en un point est donc distingué du suivi de trajectoire en raison de la condition de Brockett que ce système ne satisfait pas ; notre plateforme ne peut donc pas être stabilisée par des retours d'états continus. En s'appuyant sur la littérature, cette thèse propose différentes approches théoriques en temps variant, fonctions transverses, platitude ou encore par "Backstepping" pour répondre à ces problèmes. Après une phase d'identification du modèle dynamique employé, la partie expérimentale, exploitant un système de Motion Capture pour récupérer les informations de position et d'orientation du système, valide ces lois de contrôle et de commande pour le suivi d'une trajectoire circulaire simple. / This thesis is dedicated to the non-linear control of a special hybrid quadrotor which is able to fly, and slide on the ground like an hovercraft. In the context of an autonomous indoor exploration this hybrid concept allows saving energy when flying is not necessary, since the drone can then slide on the ground without having to compensate for the gravity; autonomy can last beyond the 20 minutes typical of a standard quadrotor. Contrarily to wheeled mobile robots, the hybrid drone ability to move across space is strongly increased since it can fly to avoid obstacles, to move between two levels, to get in through a window. The study under consideration is essentially focused on the displacement of the drone on the ground and aims at designing and implementing a control law so that our system is able to track a 2D xy plane trajectory. This terrestrial quadrotor is similar to a slider underactuated vehicle. The point stabilisation is then separately studied from the trajectory tracking issue because of the Brockett condition, which is not satisfied in that case; our platform cannot be stabilized by means of continuous state feedbacks. This thesis proposes different theoretical developments based on the literature and deriving from time varying control laws, transverse functions, flatness or backstepping techniques to solve both point stabilisation and trajectory tracking. The experimental part of the thesis is based on the recovering of the drone position in real time and orientation via a Motion Capture system for feedback loop in the control law; the proposed dynamical model was validated as well as the control and command laws for the tracking of a circular trajectory.

Page generated in 0.045 seconds