• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'impact de l'activité humaine sur la composition chimique de la troposphère au-dessus de l'Océan Pacifique : développement d'un modèle téléscopique de chimie et de transport atmosphériques et interprétation des résultats de la campagne de mesures MLOPEX

Ginoux, Paul 19 September 1997 (has links)
<p align='justify'>De manière à mieux comprendre l'impact des émissions anthropiques sur la troposphère reculée, les concentrations d'un nombre important de composés atmosphériques ont été mesurés dans la troposphère libre au-dessus d'Hawaii durant la campagne Mauna Loa Observatory Photochemistry Experiment (MLOPEX) accomplie au cours des années 1991 et 1992. Le constituant chimique fondamental pour évaluer cet impact est le radical hydroxyle OH qui fut mesuré au printemps et en été de l'année 1992. La variation diurne de la direction du vent génère pendant la journée un mélange des masses d'air de la couche limite planétaire avec la troposphère libre. Actuellement les modèles régional et global de chimie troposphérique ne peuvent tenir compte à la fois du transport à grande échelle et du mélange local. Nous avons développé un modèle tridimensionnel qui nous permet d'analyser la chimie et la dynamique troposphérique à ces deux échelles. Pour ce faire, nous avons utilisé une grille non-structurée qui offre un moyen efficace de caractériser la région d'Hawaii à l'aide d'une haute résolution et le restant de l'hémisphère Nord avec une résolution qui décroît au fur et à mesure que l'on s'éloigne d'Hawaii. La distribution de 46 composés gazeux avec 138 réactions, incluant une chimie détaillée des hydrocarbures non-méthaniques (isoprène, éthane, éthène, propène et alpha-pinène) est calculée avec un pas de temps de 20 minutes. A l'aide de notre modèle nous avons simulé une période de huit jours pour chacune des saisons. Les résultats des simulations ont été comparés aux observations et interprétés à l'aide d'études de rétro-trajectoires, de traceurs passifs et de bilans chimiques local et régional de l'ozone et de ses précurseurs.</p>
2

Développement d'instruments pour la détection de constituants troposphériques minoritaires par spectroscopie différentielle dans le domaine UV-Visible

Vandaele, Ann Carine 29 October 1997 (has links)
<p align="justify">L'étude des phénomènes physico-chimiques de l'atmosphère nécessite la connaissance préalable des caractéristiques de chacun de ses constituants, ainsi que de leurs distributions spatiales et temporelles. Les méthodes spectroscopiques permettent la détection simultanée de nombreux constituants atmosphériques par la mesure quantitative de leurs absorptions. Dans le domaine UV-visible, ces techniques se basent sur la loi de Beer-Lambert, dont l'application nécessite la connaissance d'un spectre de référence exempt d'absorption. Il est impossible d'obtenir un tel spectre dans le cas des mesures atmosphériques. On a alors recourt à la technique dite de spectroscopie d'absorption différentielle (Differential Optical Absorption Spectroscopy) qui analyse les composantes des absorptions variant rapidement en fonction de la longueur d'onde.</p> <p align="justify">Trois instruments ont été développés dans le cadre de ce travail pour la mesure par spectroscopie d'absorption différentielle dans le domaine UV-visible. Le premier utilise un spectromètre par transformée de Fourier, les deux autres des spectromètres à réseau associés soit à une barrette de photodiodes soit à un détecteur de type CCD. Ces instruments ont été conçus dans le but de fournir des mesures de divers constituants (03, SO2, NO2, HNO2, H2CO, toluène, benzène) de manière automatique et en utilisant des trajets d'absorption courts ( < 1 km). Les performances de chacun de ces instruments ont été évaluées au cours de différentes campagnes de mesure. Le spectromètre par transformée de Fourier s'avère être un outil performant pour de telles mesures, son principal avantage étant de posséder une calibration en longueur d'onde interne, précise et reproductible. Les instruments utilisant un spectromètre à réseau associé à un détecteur multi-éléments présentent un certain nombre d'inconvénients rendant peu aisées les mesures troposphériques sur de courtes distances. Ces inconvénients sont liés soit au spectromètre ( calibration en longueur d'onde externe, modification de celle-ci au cours du temps) ou aux détecteurs ( gains différents pour chacun des éléments sensibles du détecteur, phénomènes d'interférence au niveau des fenêtres de protection). Ces problèmes augmentent la complexité de l'analyse des spectres atmosphériques.</p> <p align="justify">Un paramètre d'importance primordiale pour la détection d'un polluant, est sa section efficace d'absorption. Nous avons mesuré la section efficace de trois molécules d'intérêt atmosphérique, SO2, CS2 et NO2. Ces spectres ont été obtenus à l'aide d'un spectromètre par transformée de Fourier, aux résolutions de 2 et 16 cm-1. La dépendance vis-à-vis de la température a été confirmée dans le cas du NO2. Pour cette molécule, un effet de pression a en outre été observé pour la première fois dans le domaine spectral 12000 20000 cm-1 (500-830 nm). Cet effet est important et peut engendrer des variations de 45% de l'intensité de la section efficace lorsque la pression partielle de NO2 varie de 0.02 à 1.0 torr. L'influence du choix des sections efficaces sur les mesures stratosphériques de NO2 a également été mise en évidence. L'utilisation de sections efficaces obtenue à basse température (220 K) implique une diminution de 20% de la quantité de NO2 mesurée mais également une diminution de l'erreur sur cette mesure. Ceci indique la nécessité de tenir compte de la dépendance des sections efficaces de NO2 à la température lors de l'analyse de spectres stratosphériques.</p>
3

Effets des entrées énergétiques sur les composés azotés dans la haute atmosphère de la Terre / Energetic inputs effects on nitrogen compounds in Earth's upper atmosphere

Vialatte, Anne 09 October 2017 (has links)
La météorologie de l’espace est un domaine dédié à l’étude de l’impact des variations de l’activité solaire sur l’environnement spatial de la Terre. Celles-ci peuvent avoir des conséquences importantes sur les technologies humaines, comme les réseaux de lignes haute-tension ou les systèmes de télécommunication par satellites. Ces mêmes variations sont également à l’origine des aurores, phénomènes observés dans la haute atmosphère de la Terre au niveau des pôles, au pied des lignes de champ magnétique. Elles vont pouvoir nous servir de traceur dans l’étude des particules so- laires piégées dans l’environnement spatial de notre planète.Les émissions aurorales, complexes, de part leur étalement et différen- ciation en altitude et de leur diversité spectrale, restent un challenge ob- servationnel.Les émissions atomiques aurorales sont bien documentées, mais ce n’est pas toujours le cas des émissions moléculaires, qui sont pourtant une source d’information potentielle sur les précipitations énergétiques prove- nant de la magnétosphère. C’est dans ce contexte que se place la définition de la mission du nanosatellite ATISE (Auroral Thermospheric and Ionosphe- ric Spectrometer Experiment), développé au Centre Spatial Universitaire de Grenoble. Il aura pour but l’observation de la haute atmosphère terrestre via l’acquisition de spectres dans le proche UV et le visible.Le diazote N2 et son ion N2+ font partie des composés majoritaires de l’atmosphère, et sont donc un choix cohérent afin de définir l’observabilité des émissions moléculaires. Le monoxyde d’azote NO est une espèce mino- ritaire dans la thermosphère, mais va avoir un rôle clé dans la destruction d’ozone stratosphérique, et donc dans la problématique du dérèglement climatique.Les émissions de ces composés, et notamment leurs profils verticaux ainsi que intensités ont été étudiées grâce au modèle TRANS, qui résout l’équation de Boltzmann pour le transport d’électrons. Ceci nous a aidé à caractériser les besoins scientifiques de la mission ATISE. Dans un second temps, l’analyse des résultats du démonstrateur-sol de ce nanosatellite a montré le potentiel de cette mission, bien que certaines spécifications ne soient pas encore atteintes. Enfin, toujours dans cette logique de recherche de nouvelles quantités observables pour la météorologie de l’espace, une dernière partie abordera la polarisation de la lumière aurorale, avec l’étude de la bande à 427,8 nm de N2+ . / Space weather is the study of the Solar activity’s impact on Earth’s space environment. This is relevant as it may have serious consequences over modern technology, such as high-voltage power lines grids or telecommu- nication systems via satellites. Solar activity is also the phenomenon that causes the aurorae, which can be seen in Earth’s upper atmosphere, at the poles, at the base of magnetic field lines. Due to this aurorae may be used as a proxy for the study of Solar particles trapped in Earth’s magnetic field.Auroral emissions are complex, as they are spread over various altitudes and wide spectral ranges. Therefore, they remain an observational chal- lenge.Emissions from atomic lines transitions in aurorae are well documented and understood, but this is not always the case for molecular emissions. These are a potential source of information on energetic inputs from the magnetosphere. This is the context in which the ATISE (Auroral Thermo- spheric and Ionospheric Spectrometer Experiment) nanosatellite was designed in the Grenoble University Space Center. Its purpose will be to observe Earth’s upper atmosphere through the acquisition of spectra in near-UV and visible domains.Dinitrogen N2 and its ion N2+ are major components of Earth’s atmos- phere at larges altitudes, and therefore a logical choice in order to define molecular emission observability. On the other hand, nitrogen monoxide NO is a minor component in the thermosphere, but has a key role in stra- tospheric ozone destruction, and therefore has important consequences on the climate.Auroral emissions, and more particularly their vertical profiles and in- tensities were studied with the TRANS model, which solves the Boltzmann equation for electron transport in the atmosphere. We used these results to define the scientific requisites for the ATISE mission. In a second phase, we tested and analyzed the results of a ground demonstrator of the instru- mentation that will be found in the nanosatellite. It showed great potential, despite the fact that part of the specifications are not yet fulfilled. Finally, still looking for new observables quantities for space weather, we studied the polarisation of auroral light, with a focus on the 427,8 nm band of N2+.
4

L'impact de l'activité humaine sur la composition chimique de la troposphère au-dessus de l'Océan Pacifique: développement d'un modèle téléscopique de chimie et de transport atmosphériques et interprétation des résultats de la campagne de mesure MLOPEX

Ginoux, Paul 19 September 1997 (has links)
<p align='justify'>De manière à mieux comprendre l'impact des émissions anthropiques sur la troposphère reculée, les concentrations d'un nombre important de composés atmosphériques ont été mesurés dans la troposphère libre au-dessus d'Hawaii durant la campagne Mauna Loa Observatory Photochemistry Experiment (MLOPEX) accomplie au cours des années 1991 et 1992. Le constituant chimique fondamental pour évaluer cet impact est le radical hydroxyle OH qui fut mesuré au printemps et en été de l'année 1992. La variation diurne de la direction du vent génère pendant la journée un mélange des masses d'air de la couche limite planétaire avec la troposphère libre. Actuellement les modèles régional et global de chimie troposphérique ne peuvent tenir compte à la fois du transport à grande échelle et du mélange local. Nous avons développé un modèle tridimensionnel qui nous permet d'analyser la chimie et la dynamique troposphérique à ces deux échelles. Pour ce faire, nous avons utilisé une grille non-structurée qui offre un moyen efficace de caractériser la région d'Hawaii à l'aide d'une haute résolution et le restant de l'hémisphère Nord avec une résolution qui décroît au fur et à mesure que l'on s'éloigne d'Hawaii. La distribution de 46 composés gazeux avec 138 réactions, incluant une chimie détaillée des hydrocarbures non-méthaniques (isoprène, éthane, éthène, propène et alpha-pinène) est calculée avec un pas de temps de 20 minutes. A l'aide de notre modèle nous avons simulé une période de huit jours pour chacune des saisons. Les résultats des simulations ont été comparés aux observations et interprétés à l'aide d'études de rétro-trajectoires, de traceurs passifs et de bilans chimiques local et régional de l'ozone et de ses précurseurs.</p><p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
5

Developpement d'instruments pour la détection de constituants troposphériques minoritaires par spectroscopie différentielle dans le domaine UV-visible

Vandaele, Ann Carine 29 October 1997 (has links)
<p align="justify">L'étude des phénomènes physico-chimiques de l'atmosphère nécessite la connaissance préalable des caractéristiques de chacun de ses constituants, ainsi que de leurs distributions spatiales et temporelles. Les méthodes spectroscopiques permettent la détection simultanée de nombreux constituants atmosphériques par la mesure quantitative de leurs absorptions. Dans le domaine UV-visible, ces techniques se basent sur la loi de Beer-Lambert, dont l'application nécessite la connaissance d'un spectre de référence exempt d'absorption. Il est impossible d'obtenir un tel spectre dans le cas des mesures atmosphériques. On a alors recourt à la technique dite de spectroscopie d'absorption différentielle (Differential Optical Absorption Spectroscopy) qui analyse les composantes des absorptions variant rapidement en fonction de la longueur d'onde.</p><p><p align="justify">Trois instruments ont été développés dans le cadre de ce travail pour la mesure par spectroscopie d'absorption différentielle dans le domaine UV-visible. Le premier utilise un spectromètre par transformée de Fourier, les deux autres des spectromètres à réseau associés soit à une barrette de photodiodes soit à un détecteur de type CCD. Ces instruments ont été conçus dans le but de fournir des mesures de divers constituants (03, SO2, NO2, HNO2, H2CO, toluène, benzène) de manière automatique et en utilisant des trajets d'absorption courts ( < 1 km). Les performances de chacun de ces instruments ont été évaluées au cours de différentes campagnes de mesure. Le spectromètre par transformée de Fourier s'avère être un outil performant pour de telles mesures, son principal avantage étant de posséder une calibration en longueur d'onde interne, précise et reproductible. Les instruments utilisant un spectromètre à réseau associé à un détecteur multi-éléments présentent un certain nombre d'inconvénients rendant peu aisées les mesures troposphériques sur de courtes distances. Ces inconvénients sont liés soit au spectromètre ( calibration en longueur d'onde externe, modification de celle-ci au cours du temps) ou aux détecteurs ( gains différents pour chacun des éléments sensibles du détecteur, phénomènes d'interférence au niveau des fenêtres de protection). Ces problèmes augmentent la complexité de l'analyse des spectres atmosphériques.</p><p><p align="justify">Un paramètre d'importance primordiale pour la détection d'un polluant, est sa section efficace d'absorption. Nous avons mesuré la section efficace de trois molécules d'intérêt atmosphérique, SO2, CS2 et NO2. Ces spectres ont été obtenus à l'aide d'un spectromètre par transformée de Fourier, aux résolutions de 2 et 16 cm-1. La dépendance vis-à-vis de la température a été confirmée dans le cas du NO2. Pour cette molécule, un effet de pression a en outre été observé pour la première fois dans le domaine spectral 12000 20000 cm-1 (500-830 nm). Cet effet est important et peut engendrer des variations de 45% de l'intensité de la section efficace lorsque la pression partielle de NO2 varie de 0.02 à 1.0 torr. L'influence du choix des sections efficaces sur les mesures stratosphériques de NO2 a également été mise en évidence. L'utilisation de sections efficaces obtenue à basse température (220 K) implique une diminution de 20% de la quantité de NO2 mesurée mais également une diminution de l'erreur sur cette mesure. Ceci indique la nécessité de tenir compte de la dépendance des sections efficaces de NO2 à la température lors de l'analyse de spectres stratosphériques.</p><p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.0339 seconds