• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 28
  • 14
  • 9
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 179
  • 48
  • 44
  • 27
  • 27
  • 26
  • 23
  • 19
  • 18
  • 18
  • 16
  • 16
  • 16
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Molecular Phylogeography and Species Discrimination of Freshwater <em>Cladophora</em> (Cladophorales, Chlorophyta) in North America

Ross, Sara J. January 2006 (has links)
<em>Cladophora</em> is a widespread freshwater filamentous cholorophyte genus and is frequently observed in eutrophic waters where it can produce large nuisance blooms. These blooms can have direct impacts on water intake for power generation, irrigation canals and can be aesthetically unpleasant. Much of the ecological and physiological studies on <em>Cladophora</em> have assumed that the populations of this genus in North America belong to the species <em>Cladophora glomerata</em>. However, this has never been tested despite that it is well documented that identifying freshwater <em>Cladophora</em> to the species level is difficult due morphological variability under different ecological conditions. In addition, the species epithets for freshwater <em>Cladophora</em> are based on European collections and it is not clear if these should be applied to North America. This study examines approximately 40 collections of <em>Cladophora</em> from the Laurentian Great Lakes and 43 from various locations in North America ranging from the Northwest Territories to Puerto Rico. Initially we determined the nucleotide sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal cistron and observed sequence divergence to be low (0-3%), demonstrating an inability for this marker to resolve species delineation as divergence of this region was low. Amplification of the inter-simple sequence repeat (ISSR) regions were used to analyze microsatellite motif frequency throughout the genome to evaluate the biogeography relationships, including diversity, of freshwater <em>Cladophora</em> sp. five different primers were used on 70 individuals. UPGMA analyses of the presence/absence of bands demonstrate that each of the Great Lake populations separate into groups according to the Lake they were initially sampled from. However, collections from North America are highly variable and do not form well supported biogeographic clades. In addition, these collections appear to be distinct from type cultures of freshwater <em>Cladophora</em> from Europe. Supplementary morphological analysis using suggested taxonomically valid criterion (length and diameter of main axis, ultimate branch, and apical cell) none were able to differentiate Great Lake populations.
62

Molecular Phylogeography and Species Discrimination of Freshwater <em>Cladophora</em> (Cladophorales, Chlorophyta) in North America

Ross, Sara J. January 2006 (has links)
<em>Cladophora</em> is a widespread freshwater filamentous cholorophyte genus and is frequently observed in eutrophic waters where it can produce large nuisance blooms. These blooms can have direct impacts on water intake for power generation, irrigation canals and can be aesthetically unpleasant. Much of the ecological and physiological studies on <em>Cladophora</em> have assumed that the populations of this genus in North America belong to the species <em>Cladophora glomerata</em>. However, this has never been tested despite that it is well documented that identifying freshwater <em>Cladophora</em> to the species level is difficult due morphological variability under different ecological conditions. In addition, the species epithets for freshwater <em>Cladophora</em> are based on European collections and it is not clear if these should be applied to North America. This study examines approximately 40 collections of <em>Cladophora</em> from the Laurentian Great Lakes and 43 from various locations in North America ranging from the Northwest Territories to Puerto Rico. Initially we determined the nucleotide sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal cistron and observed sequence divergence to be low (0-3%), demonstrating an inability for this marker to resolve species delineation as divergence of this region was low. Amplification of the inter-simple sequence repeat (ISSR) regions were used to analyze microsatellite motif frequency throughout the genome to evaluate the biogeography relationships, including diversity, of freshwater <em>Cladophora</em> sp. five different primers were used on 70 individuals. UPGMA analyses of the presence/absence of bands demonstrate that each of the Great Lake populations separate into groups according to the Lake they were initially sampled from. However, collections from North America are highly variable and do not form well supported biogeographic clades. In addition, these collections appear to be distinct from type cultures of freshwater <em>Cladophora</em> from Europe. Supplementary morphological analysis using suggested taxonomically valid criterion (length and diameter of main axis, ultimate branch, and apical cell) none were able to differentiate Great Lake populations.
63

Diversity of Low Chill Peaches (Prunus persica) from Asia, Brazil, Europe and the USA

Anderson, Natalie A. 2010 May 1900 (has links)
One hundred fifty-five peach (Prunus persica) cultivars, from Asia, Brazil, Europe, and the USA, were examined using eleven Simple Sequence Repeats (SSRs) to study the genetic relationships among low chill as compared to high chill peach germplasm. Data was analyzed by NTSYSpc to form a similarity matrix using Nei and Li’s Dice similarity coefficient. This similarity matrix was then subjected to a cluster analysis and a dendrogram was constructed using the UPGMA (Unweighted Pair-Group Method, Arithmetic Mean) method. A wide range of diversity was detected, from 0.33 coefficient of similarity amongst the Thai peaches to 0.97 between two Brazilian peaches. The most distant clusters were the low chill peaches from Thailand and Taiwan and the local cultivars (both fruit and ornamental types) from China. Among the improved germplasm, there were distinct clusters for the Chinese/Japanese cultivars, three clusters for the Brazilian cultivars and one for the cultivars from the USA and Europe. The Brazilian materials clustered according to breeding programs in São Paulo and Pelotas reflecting the different sets of local cultivars used in the breeding efforts. The largest group investigated was the European/USA peaches. This group subdivided into three distinct clusters, with a general clustering of the low chill germplasm. The low chill accessions from Asia were genetically distant from the improved low chill peaches from the USA or Brazil. The low chill peaches from the Americas were more closely related to the high chill peaches developed in the USA and China/Japan due to the introgression of this germplasm into a low chill background.
64

Effects of the mismatch repair system on instability of trinucleotide repeats

Bourn, Rebecka Lynn. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Includes bibliographical references.
65

Formation of Dicentric and Acentric Chromosomes, by a Template Switch Mechanism, in Budding Yeast

Paek, Andrew Luther January 2010 (has links)
Chromosomal rearrangements occur in all organisms and are important both in the evolution of species and in pathology. In this dissertation I show that in Saccharomyces cerevisiae, or budding yeast, one type of chromosomal rearrangement occurs when inverted repeats fuse, likely during DNA replication by a novel mechanism termed "faulty template switching". This fusion can lead to the formation of either a dicentric or acentric chromosome, depending on the direction of the replication fork. Dicentric chromosomes are inherently unstable due to their abnormal number of centromeres, and thus undergo additional chromosomal rearrangements and chromosome loss.
66

Mechanisms of chromosomal instability induced by unstable DNA repeats in yeast S.cerevisiae

Zhang, Yu 27 August 2014 (has links)
DNA repetitive sequences capable of adopting non-B DNA structures are a potent source of instability in eukaryotic genomes. They are strong inducers of chromosomal fragility and genome rearrangements that cause various hereditary diseases and cancers. In addition, a subset of repeats also has an ability to expand, which leads to more than 20 human genetic diseases that are collectively known as repeat expansion diseases. However, the mechanisms underlying the potential of these structure-prone motifs to break and expand are largely unknown. In this study, a systematic genome-wide screen was employed in yeast Saccharomyces cerevisiae to investigate the contributing factors of the instability of two representative non-B DNA-forming repeats: the triplex-adopting GAA/TTC tracts and the inverted repeats that can form hairpin and cruciform structures. The GAA/TTC screen revealed that DNA replication and transcription initiation are the two major pathways governing the GAA/TTC stability in yeast, as corresponding mutants strongly induce both fragility and large-scale expansions of the repeats. The inverted repeats screen and follow-up experiments revealed that both replication-dependent and -independent pathways are involved in maintaining the stability of palindromic sequences. We propose that similar mechanisms could operate in the human cells to mediate the deleterious metabolism of GAA and inverted repeats.
67

Genetic analysis of Brassica carinata

2013 September 1900 (has links)
Brassica carinata is being actively pursued as a new industrial oil crop platform for the Canadian Prairies. A genetic assessment of B. carinata was performed to elucidate its evolutionary origins and create a genetic map to assist in locating genes and traits of interest that would help in marker-assisted breeding. First, genetic analysis using simple sequence repeat (SSR) markers, previously tested on B. juncea and B. napus, was performed, to examine the genetic diversity of 37 B. carinata lines. SSR analysis revealed world accessions were more diverse than lines conditioned to grow in the prairies. Diversity analysis revealed that the parental lines of a double haploid (DH) population, 179 and 345, obtained from the John Innes Centre (JIC), were among the more genetically diverse lines, supporting the use of this population for linkage mapping. Genetic markers created from 3’ targeted SNP discovery between 179 and 345, were tested on the DH population resulting in the generation of a B. carinata genetic linkage map essentially with no prior sequence data knowledge. This genetic map contained 341 SNP and 86 SSR loci identifying eight linkage groups belonging to the B genome, nine belonging to the C genome and two unidentified groups spanning 2041 cM. Comparative mapping of polymorphic markers identified in the amphidiploid B. carinata indicated the orientation of B and C genomes coincide with that of other Brassica species, and the two genomes have remained essentially unaltered, with no major chromosomal rearrangements since the formation of B. carinata. A lesser number of polymorphic markers were detected in the C genome, which suggested the B genome is more genetically diverse in B. carinata. Limited field trials of the 179 x 345 DH population were performed during the 2011 and 2012 growing seasons. Preliminary quantitative trait loci (QTLs) for agronomic traits including flowering time (FT), plant height (PH), and seed quality were identified.
68

Conservation and Evolution of Microsatellites in Vertebrate Genomes

Buschiazzo, Emmanuel January 2008 (has links)
Microsatellites are strings of short DNA motifs (≤6 bp) repeated in tandem across genomes of both prokaryotes and eukaryotes. In 20 years, they became popular genetic markers, successfully employed in the field of genetic mapping and gene hunting, as well as to address various biological questions at the individual, family, population and species level. However, evolutionary and demographic inferences from microsatellite polymorphism are hampered by controversy and ambiguity in the mutational processes of microsatellite sequences. Drawing on new data from genome projects, I review in Chapter 1 the concept of a microsatellite life cycle, which hypothesizes that microsatellites follow a life cycle from birth, through expansion, contraction, death and potentially resurrection. To document and understand this integrative concept of evolution, which could help improve current models of microsatellite evolution, there is an implicit need to study the evolution of microsatellites above the species level. A prerequisite of such comparative studies is therefore to find microsatellite loci that are conserved between different species. The near or full completion of many vertebrate genomes and their alignment against one another offer the ultimate approach to find genomic elements conserved over a large evolutionary scale. In Chapter 2, I present a new comprehensive method to find conserved microsatellites in whole genomes. Using the multiple-alignment of the human genome against those of 11 mammalian and five non-mammalian vertebrates, I examine the genomewide conservation of microsatellites, and challenge the general assumption that microsatellites are too labile to be maintained in distant species. In Chapter 3, I present similar results using the alignment of the newly sequenced platypus genome against those of three mammals, the chicken and the lizard, and incorporate these data into the framework created by the 17-genome analysis. This enlarged dataset was ground for attempting to reconstruct a vertebrate phylogeny from the presence/absence of microsatellites in the different genomes. Maximum parsimony analyses resulted in a tree much similar to that of the current view of the vertebrate phylogeny, while Bayesian analyses showed some discrepancies. This work opens a way for novel theoretical developments regarding the inference of ancestral states of microsatellites. In Chapter 4, I show how knowledge on conserved microsatellite sites can help for the development of a set of comparative primers useful across the Mammalia; implementing a similar protocol, nine conserved dinucleotide repeats were genotyped in 20 unrelated individuals of 18 species (nine sister species) encompassing the mammalian phylogeny, including marsupials and monotremes, and four microsatellites were sequenced in 4 individuals per species. My results emphasize conserved microsatellites as a new resource for genetic mapping and population studies. Finally, in Chapter 5, I recount the unexpected extent of structural change among mammalian orthologous microsatellites, including change of complexity, motif replacement and overall length variability. Altogether, these findings provide a comprehensive framework that may help in many areas of research, including molecular ecology, genome mapping, population genetics, and genome and microsatellite evolution.
69

Molecular and biological characteristics of stroma and tumor cells in colorectal cancer /

Gao, Jingfang, January 2008 (has links)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2008. / Härtill 5 uppsatser.
70

On the clinical value of genetic analysis in colorectal cancer patients /

Lindforss, Ulrik, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.

Page generated in 0.0455 seconds