• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimation

Apel, Thomas, Pester, Cornelia 31 August 2006 (has links) (PDF)
In this paper, a mixed boundary value problem for the Laplace-Beltrami operator is considered for spherical domains in $R^3$, i.e. for domains on the unit sphere. These domains are parametrized by spherical coordinates (\varphi, \theta), such that functions on the unit sphere are considered as functions in these coordinates. Careful investigation leads to the introduction of a proper finite element space corresponding to an isotropic triangulation of the underlying domain on the unit sphere. Error estimates are proven for a Clément-type interpolation operator, where appropriate, weighted norms are used. The estimates are applied to the deduction of a reliable and efficient residual error estimator for the Laplace-Beltrami operator.
2

The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes

Grosman, Serguei 01 September 2006 (has links) (PDF)
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. The simplest local error estimator from the implementation point of view is the so-called hierarchical error estimator. The reliability proof is usually based on two prerequisites: the saturation assumption and the strengthened Cauchy-Schwarz inequality. The proofs of these facts are extended in the present work for the case of the singularly perturbed reaction-diffusion equation and of the meshes with anisotropic elements. It is shown that the constants in the corresponding estimates do neither depend on the aspect ratio of the elements, nor on the perturbation parameters. Utilizing the above arguments the concluding reliability proof is provided as well as the efficiency proof of the estimator, both independent of the aspect ratio and perturbation parameters.
3

A residual a posteriori error estimator for the eigenvalue problem for the Laplace-Beltrami operator

Pester, Cornelia 06 September 2006 (has links) (PDF)
The Laplace-Beltrami operator corresponds to the Laplace operator on curved surfaces. In this paper, we consider an eigenvalue problem for the Laplace-Beltrami operator on subdomains of the unit sphere in $\R^3$. We develop a residual a posteriori error estimator for the eigenpairs and derive a reliable estimate for the eigenvalues. A global parametrization of the spherical domains and a carefully chosen finite element discretization allows us to use an approach similar to the one for the two-dimensional case. In order to assure results in the quality of those for plane domains, weighted norms and an adapted Clément-type interpolation operator have to be introduced.
4

Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimation

Apel, Thomas, Pester, Cornelia 31 August 2006 (has links)
In this paper, a mixed boundary value problem for the Laplace-Beltrami operator is considered for spherical domains in $R^3$, i.e. for domains on the unit sphere. These domains are parametrized by spherical coordinates (\varphi, \theta), such that functions on the unit sphere are considered as functions in these coordinates. Careful investigation leads to the introduction of a proper finite element space corresponding to an isotropic triangulation of the underlying domain on the unit sphere. Error estimates are proven for a Clément-type interpolation operator, where appropriate, weighted norms are used. The estimates are applied to the deduction of a reliable and efficient residual error estimator for the Laplace-Beltrami operator.
5

The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes

Grosman, Serguei 01 September 2006 (has links)
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. The simplest local error estimator from the implementation point of view is the so-called hierarchical error estimator. The reliability proof is usually based on two prerequisites: the saturation assumption and the strengthened Cauchy-Schwarz inequality. The proofs of these facts are extended in the present work for the case of the singularly perturbed reaction-diffusion equation and of the meshes with anisotropic elements. It is shown that the constants in the corresponding estimates do neither depend on the aspect ratio of the elements, nor on the perturbation parameters. Utilizing the above arguments the concluding reliability proof is provided as well as the efficiency proof of the estimator, both independent of the aspect ratio and perturbation parameters.
6

A residual a posteriori error estimator for the eigenvalue problem for the Laplace-Beltrami operator

Pester, Cornelia 06 September 2006 (has links)
The Laplace-Beltrami operator corresponds to the Laplace operator on curved surfaces. In this paper, we consider an eigenvalue problem for the Laplace-Beltrami operator on subdomains of the unit sphere in $\R^3$. We develop a residual a posteriori error estimator for the eigenpairs and derive a reliable estimate for the eigenvalues. A global parametrization of the spherical domains and a carefully chosen finite element discretization allows us to use an approach similar to the one for the two-dimensional case. In order to assure results in the quality of those for plane domains, weighted norms and an adapted Clément-type interpolation operator have to be introduced.

Page generated in 0.0845 seconds