Spelling suggestions: "subject:"expositionsabschätzung"" "subject:"kostenabschätzung""
1 |
Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimationApel, Thomas, Pester, Cornelia 31 August 2006 (has links) (PDF)
In this paper, a mixed boundary value problem for
the Laplace-Beltrami operator is considered for
spherical domains in $R^3$, i.e. for domains on
the unit sphere. These domains are parametrized
by spherical coordinates (\varphi, \theta),
such that functions on the unit sphere are
considered as functions in these coordinates.
Careful investigation leads to the introduction
of a proper finite element space corresponding to
an isotropic triangulation of the underlying
domain on the unit sphere. Error estimates are
proven for a Clément-type interpolation operator,
where appropriate, weighted norms are used.
The estimates are applied to the deduction of
a reliable and efficient residual error estimator
for the Laplace-Beltrami operator.
|
2 |
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshesGrosman, Serguei 01 September 2006 (has links) (PDF)
Singularly perturbed reaction-diffusion problems
exhibit in general solutions with anisotropic
features, e.g. strong boundary and/or interior
layers. This anisotropy is reflected in the
discretization by using meshes with anisotropic
elements. The quality of the numerical solution
rests on the robustness of the a posteriori error
estimator with respect to both the perturbation
parameters of the problem and the anisotropy of the
mesh. The simplest local error estimator from the
implementation point of view is the so-called
hierarchical error estimator. The reliability
proof is usually based on two prerequisites:
the saturation assumption and the strengthened
Cauchy-Schwarz inequality. The proofs of these
facts are extended in the present work for the
case of the singularly perturbed reaction-diffusion
equation and of the meshes with anisotropic elements.
It is shown that the constants in the corresponding
estimates do neither depend on the aspect ratio
of the elements, nor on the perturbation parameters.
Utilizing the above arguments the concluding
reliability proof is provided as well as the
efficiency proof of the estimator, both
independent of the aspect ratio and perturbation
parameters.
|
3 |
A residual a posteriori error estimator for the eigenvalue problem for the Laplace-Beltrami operatorPester, Cornelia 06 September 2006 (has links) (PDF)
The Laplace-Beltrami operator corresponds to the Laplace operator on curved surfaces. In this paper, we consider an eigenvalue problem for the Laplace-Beltrami operator on subdomains of the unit sphere in $\R^3$. We develop a residual a posteriori error estimator for the eigenpairs and derive a reliable estimate for the eigenvalues. A global parametrization of the spherical domains and a carefully chosen finite element discretization allows us to use an approach similar to the one for the two-dimensional case. In order to assure results in the quality of those for plane domains, weighted norms and an adapted Clément-type interpolation operator have to be introduced.
|
4 |
Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimationApel, Thomas, Pester, Cornelia 31 August 2006 (has links)
In this paper, a mixed boundary value problem for
the Laplace-Beltrami operator is considered for
spherical domains in $R^3$, i.e. for domains on
the unit sphere. These domains are parametrized
by spherical coordinates (\varphi, \theta),
such that functions on the unit sphere are
considered as functions in these coordinates.
Careful investigation leads to the introduction
of a proper finite element space corresponding to
an isotropic triangulation of the underlying
domain on the unit sphere. Error estimates are
proven for a Clément-type interpolation operator,
where appropriate, weighted norms are used.
The estimates are applied to the deduction of
a reliable and efficient residual error estimator
for the Laplace-Beltrami operator.
|
5 |
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshesGrosman, Serguei 01 September 2006 (has links)
Singularly perturbed reaction-diffusion problems
exhibit in general solutions with anisotropic
features, e.g. strong boundary and/or interior
layers. This anisotropy is reflected in the
discretization by using meshes with anisotropic
elements. The quality of the numerical solution
rests on the robustness of the a posteriori error
estimator with respect to both the perturbation
parameters of the problem and the anisotropy of the
mesh. The simplest local error estimator from the
implementation point of view is the so-called
hierarchical error estimator. The reliability
proof is usually based on two prerequisites:
the saturation assumption and the strengthened
Cauchy-Schwarz inequality. The proofs of these
facts are extended in the present work for the
case of the singularly perturbed reaction-diffusion
equation and of the meshes with anisotropic elements.
It is shown that the constants in the corresponding
estimates do neither depend on the aspect ratio
of the elements, nor on the perturbation parameters.
Utilizing the above arguments the concluding
reliability proof is provided as well as the
efficiency proof of the estimator, both
independent of the aspect ratio and perturbation
parameters.
|
6 |
A residual a posteriori error estimator for the eigenvalue problem for the Laplace-Beltrami operatorPester, Cornelia 06 September 2006 (has links)
The Laplace-Beltrami operator corresponds to the Laplace operator on curved surfaces. In this paper, we consider an eigenvalue problem for the Laplace-Beltrami operator on subdomains of the unit sphere in $\R^3$. We develop a residual a posteriori error estimator for the eigenpairs and derive a reliable estimate for the eigenvalues. A global parametrization of the spherical domains and a carefully chosen finite element discretization allows us to use an approach similar to the one for the two-dimensional case. In order to assure results in the quality of those for plane domains, weighted norms and an adapted Clément-type interpolation operator have to be introduced.
|
Page generated in 0.0845 seconds