Spelling suggestions: "subject:"stretch elements""
1 |
A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations / A posteriori Fehlerschätzer für das Stokes Problem: Anisotrope und isotrope DiskretisierungenCreusé, Emmanuel, Kunert, Gerd, Nicaise, Serge 16 January 2003 (has links) (PDF)
The paper presents a posteriori error estimators for the stationary Stokes problem. We consider anisotropic finite element discretizations (i.e. elements with very large aspect ratio) where conventional, isotropic error estimators fail.
Our analysis covers two- and three-dimensional domains, conforming and nonconforming discretizations as well as different elements.
This large variety of settings requires different approaches and results in different estimators. Furthermore many examples of finite element pairs that are covered by the analysis are presented.
Lower and upper error bounds form the main result with minimal assumptions on the elements. The lower error bound is uniform with respect to the mesh anisotropy with the exception of nonconforming 3D discretizations made of pentahedra or hexahedra. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation.
In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. Some of the corresponding results seem to be novel (in particular for 3D domains), and cover element pairs of practical importance.
The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimators.
|
2 |
Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshesKunert, Gerd 09 November 2000 (has links) (PDF)
We consider a singularly perturbed reaction-diffusion problem and
derive and rigorously analyse an a posteriori residual error
estimator that can be applied to anisotropic finite element meshes.
The quotient of the upper and lower error bounds is the so-called
matching function which depends on the anisotropy (of the
mesh and the solution) but not on the small perturbation parameter.
This matching function measures how well the anisotropic finite
element mesh corresponds to the anisotropic problem.
Provided this correspondence is sufficiently good, the matching
function is O(1).
Hence one obtains tight error bounds, i.e. the error estimator
is reliable and efficient as well as robust with respect to the
small perturbation parameter.
A numerical example supports the anisotropic error analysis.
|
3 |
Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshesKunert, Gerd 03 January 2001 (has links) (PDF)
Singularly perturbed problems often yield solutions ith strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation.
To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element meshes. The estimator is based on the solution of a local problem, and yields error bounds uniformly in the small perturbation parameter.
The error estimation is efficient, i.e. a lower error bound holds. The error estimator is also reliable, i.e. an upper error bound holds, provided that the anisotropic mesh discretizes the problem sufficiently well.
A numerical example supports the analysis of our anisotropic error estimator.
|
4 |
A posteriori error estimation for convection dominated problems on anisotropic meshesKunert, Gerd 22 March 2002 (has links) (PDF)
A singularly perturbed convection-diffusion problem in two and three space dimensions is discretized using the streamline upwind Petrov Galerkin (SUPG) variant of the finite element method. The dominant convection frequently gives rise to solutions with layers; hence anisotropic finite elements can be applied advantageously.
The main focus is on a posteriori energy norm error estimation that is robust in the perturbation parameter and with respect to the mesh anisotropy. A residual error estimator and a local problem error estimator are proposed and investigated.
The analysis reveals that the upper error bound depends on the alignment of the anisotropies of the mesh and of the solution. Hence reliable error estimation is possible for suitable anisotropic meshes. The lower error bound depends on the problem data via a local mesh Peclet number. Thus efficient error estimation is achieved for small mesh Peclet numbers.
Altogether, error estimation approaches for isotropic meshes are successfully extended to anisotropic elements. Several numerical experiments support the analysis.
|
5 |
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshesGrosman, Serguei 01 September 2006 (has links) (PDF)
Singularly perturbed reaction-diffusion problems
exhibit in general solutions with anisotropic
features, e.g. strong boundary and/or interior
layers. This anisotropy is reflected in the
discretization by using meshes with anisotropic
elements. The quality of the numerical solution
rests on the robustness of the a posteriori error
estimator with respect to both the perturbation
parameters of the problem and the anisotropy of the
mesh. The simplest local error estimator from the
implementation point of view is the so-called
hierarchical error estimator. The reliability
proof is usually based on two prerequisites:
the saturation assumption and the strengthened
Cauchy-Schwarz inequality. The proofs of these
facts are extended in the present work for the
case of the singularly perturbed reaction-diffusion
equation and of the meshes with anisotropic elements.
It is shown that the constants in the corresponding
estimates do neither depend on the aspect ratio
of the elements, nor on the perturbation parameters.
Utilizing the above arguments the concluding
reliability proof is provided as well as the
efficiency proof of the estimator, both
independent of the aspect ratio and perturbation
parameters.
|
6 |
Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshesGrosman, Serguei 05 April 2006 (has links) (PDF)
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. An estimator that has shown to be one of the most reliable for reaction-diffusion problem is the <i>equilibrated residual method</i> and its modification done by Ainsworth and Babuška for singularly perturbed problem. However, even the modified method is not robust in the case of anisotropic meshes. The present work modifies the equilibrated residual method for anisotropic meshes. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. A numerical example confirms the theory.
|
7 |
A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizationsCreusé, Emmanuel, Kunert, Gerd, Nicaise, Serge 16 January 2003 (has links)
The paper presents a posteriori error estimators for the stationary Stokes problem. We consider anisotropic finite element discretizations (i.e. elements with very large aspect ratio) where conventional, isotropic error estimators fail.
Our analysis covers two- and three-dimensional domains, conforming and nonconforming discretizations as well as different elements.
This large variety of settings requires different approaches and results in different estimators. Furthermore many examples of finite element pairs that are covered by the analysis are presented.
Lower and upper error bounds form the main result with minimal assumptions on the elements. The lower error bound is uniform with respect to the mesh anisotropy with the exception of nonconforming 3D discretizations made of pentahedra or hexahedra. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation.
In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. Some of the corresponding results seem to be novel (in particular for 3D domains), and cover element pairs of practical importance.
The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimators.
|
8 |
Ein Residuenfehlerschätzer für anisotrope Tetraedernetze und Dreiecksnetze in der Finite-Elemente-MethodeKunert, G. 30 October 1998 (has links) (PDF)
Some boundary value problems yield anisotropic solutions, e.g. solutions with boundary layers. If such problems are to be solved with the finite element method (FEM), anisotropically refined meshes can be advantageous. In order to construct these meshes or to control the error one aims at reliable error estimators. For isotropic meshes such estimators are known but they fail when applied to anisotropic meshes. Rectangular (or cuboidal) anisotropic meshes were already investigated. In this paper an error estimator is presented for tetrahedral or triangular meshes which offer a much greater geometrical flexibility.
|
9 |
Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshesKunert, Gerd 03 January 2001 (has links)
Singularly perturbed problems often yield solutions ith strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation.
To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element meshes. The estimator is based on the solution of a local problem, and yields error bounds uniformly in the small perturbation parameter.
The error estimation is efficient, i.e. a lower error bound holds. The error estimator is also reliable, i.e. an upper error bound holds, provided that the anisotropic mesh discretizes the problem sufficiently well.
A numerical example supports the analysis of our anisotropic error estimator.
|
10 |
A posteriori error estimation for convection dominated problems on anisotropic meshesKunert, Gerd 22 March 2002 (has links)
A singularly perturbed convection-diffusion problem in two and three space dimensions is discretized using the streamline upwind Petrov Galerkin (SUPG) variant of the finite element method. The dominant convection frequently gives rise to solutions with layers; hence anisotropic finite elements can be applied advantageously.
The main focus is on a posteriori energy norm error estimation that is robust in the perturbation parameter and with respect to the mesh anisotropy. A residual error estimator and a local problem error estimator are proposed and investigated.
The analysis reveals that the upper error bound depends on the alignment of the anisotropies of the mesh and of the solution. Hence reliable error estimation is possible for suitable anisotropic meshes. The lower error bound depends on the problem data via a local mesh Peclet number. Thus efficient error estimation is achieved for small mesh Peclet numbers.
Altogether, error estimation approaches for isotropic meshes are successfully extended to anisotropic elements. Several numerical experiments support the analysis.
|
Page generated in 0.0769 seconds