• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 4
  • 4
  • 1
  • Tagged with
  • 37
  • 37
  • 21
  • 20
  • 19
  • 17
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations / A posteriori Fehlerschätzer für das Stokes Problem: Anisotrope und isotrope Diskretisierungen

Creusé, Emmanuel, Kunert, Gerd, Nicaise, Serge 16 January 2003 (has links) (PDF)
The paper presents a posteriori error estimators for the stationary Stokes problem. We consider anisotropic finite element discretizations (i.e. elements with very large aspect ratio) where conventional, isotropic error estimators fail. Our analysis covers two- and three-dimensional domains, conforming and nonconforming discretizations as well as different elements. This large variety of settings requires different approaches and results in different estimators. Furthermore many examples of finite element pairs that are covered by the analysis are presented. Lower and upper error bounds form the main result with minimal assumptions on the elements. The lower error bound is uniform with respect to the mesh anisotropy with the exception of nonconforming 3D discretizations made of pentahedra or hexahedra. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. Some of the corresponding results seem to be novel (in particular for 3D domains), and cover element pairs of practical importance. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimators.
2

Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes

Kunert, G. 30 October 1998 (has links) (PDF)
Some boundary value problems yield anisotropic solutions, e.g. solutions with boundary layers. If such problems are to be solved with the finite element method (FEM), anisotropically refined meshes can be advantageous. In order to construct these meshes or to control the error one aims at reliable error estimators. For \emph{isotropic} meshes many estimators are known, but they either fail when used on \emph{anisotropic} meshes, or they were not applied yet. For rectangular (or cuboidal) anisotropic meshes a modified error estimator had already been found. We are investigating error estimators on anisotropic tetrahedral or triangular meshes because such grids offer greater geometrical flexibility. For the Poisson equation a residual error estimator, a local Dirichlet problem error estimator, and an $L_2$ error estimator are derived, respectively. Additionally a residual error estimator is presented for a singularly perturbed reaction diffusion equation. It is important that the anisotropic mesh corresponds to the anisotropic solution. Provided that a certain condition is satisfied, we have proven that all estimators bound the error reliably.
3

Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes

Kunert, Gerd 09 November 2000 (has links) (PDF)
We consider a singularly perturbed reaction-diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis.
4

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Kunert, Gerd 03 January 2001 (has links) (PDF)
Singularly perturbed problems often yield solutions ith strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element meshes. The estimator is based on the solution of a local problem, and yields error bounds uniformly in the small perturbation parameter. The error estimation is efficient, i.e. a lower error bound holds. The error estimator is also reliable, i.e. an upper error bound holds, provided that the anisotropic mesh discretizes the problem sufficiently well. A numerical example supports the analysis of our anisotropic error estimator.
5

A note on the energy norm for a singularly perturbed model problem

Kunert, Gerd 16 January 2001 (has links) (PDF)
A singularly perturbed reaction-diffusion model problem is considered, and the choice of an appropriate norm is discussed. Particular emphasis is given to the energy norm. Certain prejudices against this norm are investigated and disproved. Moreover, an adaptive finite element algorithm is presented which exhibits an optimal error decrease in the energy norm in some simple numerical experiments. This underlines the suitability of the energy norm.
6

Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes

Kunert, Gerd, Nicaise, Serge 10 July 2001 (has links) (PDF)
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz-Zhu (ZZ) type error estimators are derived which are both based on some recovered gradient. Two different, rigorous analytical approaches yield the equivalence of both ZZ error estimators to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by several numerical examples.
7

A posteriori error estimation for convection dominated problems on anisotropic meshes

Kunert, Gerd 22 March 2002 (has links) (PDF)
A singularly perturbed convection-diffusion problem in two and three space dimensions is discretized using the streamline upwind Petrov Galerkin (SUPG) variant of the finite element method. The dominant convection frequently gives rise to solutions with layers; hence anisotropic finite elements can be applied advantageously. The main focus is on a posteriori energy norm error estimation that is robust in the perturbation parameter and with respect to the mesh anisotropy. A residual error estimator and a local problem error estimator are proposed and investigated. The analysis reveals that the upper error bound depends on the alignment of the anisotropies of the mesh and of the solution. Hence reliable error estimation is possible for suitable anisotropic meshes. The lower error bound depends on the problem data via a local mesh Peclet number. Thus efficient error estimation is achieved for small mesh Peclet numbers. Altogether, error estimation approaches for isotropic meshes are successfully extended to anisotropic elements. Several numerical experiments support the analysis.
8

Recovery based error estimation for the Method of Moments

Strydom, Willem Jacobus 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The Method of Moments (MoM) is routinely used for the numerical solution of electromagnetic surface integral equations. Solution errors are inherent to any numerical computational method, and error estimators can be effectively employed to reduce and control these errors. In this thesis, gradient recovery techniques of the Finite Element Method (FEM) are formulated within the MoM context, in order to recover a higher-order charge of a Rao-Wilton-Glisson (RWG) MoM solution. Furthermore, a new recovery procedure, based specifically on the properties of the RWG basis functions, is introduced by the author. These recovered charge distributions are used for a posteriori error estimation of the charge. It was found that the newly proposed charge recovery method has the highest accuracy of the considered recovery methods, and is the most suited for applications within recovery based error estimation. In addition to charge recovery, the possibility of recovery procedures for the MoM solution current are also investigated. A technique is explored whereby a recovered charge is used to find a higher-order divergent current representation. Two newly developed methods for the subsequent recovery of the solenoidal current component, as contained in the RWG solution current, are also introduced by the author. A posteriori error estimation of the MoM current is accomplished through the use of the recovered current distributions. A mixed second-order recovered current, based on a vector recovery procedure, was found to produce the most accurate results. The error estimation techniques developed in this thesis could be incorporated into an adaptive solver scheme to optimise the solution accuracy relative to the computational cost. / AFRIKAANSE OPSOMMING: Die Moment Metode (MoM) vind algemene toepassing in die numeriese oplossing van elektromagnetiese oppervlak integraalvergelykings. Numeriese foute is inherent tot die prosedure: foutberamingstegnieke is dus nodig om die betrokke foute te analiseer en te reduseer. Gradiënt verhalingstegnieke van die Eindige Element Metode word in hierdie tesis in die MoM konteks geformuleer. Hierdie tegnieke word ingespan om die oppervlaklading van 'n Rao-Wilton-Glisson (RWG) MoM oplossing na 'n verbeterde hoër-orde voorstelling te neem. Verder is 'n nuwe lading verhalingstegniek deur die outeur voorgestel wat spesifiek op die eienskappe van die RWG basis funksies gebaseer is. Die verhaalde ladingsverspreidings is geïmplementeer in a posteriori fout beraming van die lading. Die nuut voorgestelde tegniek het die akkuraatste resultate gelewer, uit die groep verhalingstegnieke wat ondersoek is. Addisioneel tot ladingsverhaling, is die moontlikheid van MoM-stroom verhalingstegnieke ook ondersoek. 'n Metode vir die verhaling van 'n hoër-orde divergente stroom komponent, gebaseer op die verhaalde lading, is geïmplementeer. Verder is twee nuwe metodes vir die verhaling van die solenodiale komponent van die RWG stroom deur die outeur voorgestel. A posteriori foutberaming van die MoM-stroom is met behulp van die verhaalde stroom verspreidings gerealiseer, en daar is gevind dat 'n gemengde tweede-orde verhaalde stroom, gebaseer op 'n vektor metode, die beste resultate lewer. Die foutberamingstegnieke wat in hierdie tesis ondersoek is, kan in 'n aanpasbare skema opgeneem word om die akkuraatheid van 'n numeriese oplossing, relatief tot die berekeningskoste, te optimeer.
9

Aplicação de um modelo substituto para otimização estrutural topológica com restrição de tensão e estimativa de erro a posteriori

Varella, Guilherme January 2015 (has links)
Este trabalho apresenta uma metodologia de otimização topológica visando reduzir o volume de uma estrutura tridimensional sujeita a restrição de tensão. A análise estrutural é feita através do método dos elementos finitos, as tensões são calculadas nos pontos de integração Gaussiana e suavizadas. Para evitar problemas associados a singularidades na tensão é aplicado o método de relaxação de tensão, que penaliza o tensor constitutivo. A norma-p é utilizada para simular a função máximo, que é utilizada como restrição global de tensão. O estimador de erro de Zienkiewicz e Zhu é usado para calcular o erro da tensão, que é considerado durante o cálculo da norma-p, tornando o processo de otimização mais robusto. Para o processo de otimização é utilizada o método de programação linear sequencial, sendo todas as derivadas calculadas analiticamente. É proposto um critério para remoção de elementos de baixa densidade, que se mostrou eficiente contribuindo para gerar estruturas bem definidas e reduzindo significativamente o tempo computacional. O fenômeno de instabilidade de tabuleiro é contornado com o uso de um filtro linear de densidade. Para reduzir o tempo dispendido no cálculo das derivadas e aumentar o desempenho do processo de otimização é proposto um modelo substituto (surrogate model) que é utilizado em iterações internas na programação linear sequencial. O modelo substituto não reduz o tempo de cálculo de cada iteração, entretanto reduziu consideravelmente o número de avaliações da derivada. O algoritmo proposto foi testado otimizando quatro estruturas, e comparado com variações do método e com outros autores quando possível, comprovando a validade da metodologia empregada. / This work presents a methodology for stress-constrained topology optimization, aiming to minimize material volume. Structural analysis is performed by the finite element method, and stress is computed at the elemental Gaussian integration points, and then smoothed over the mesh. In order to avoid the stress singularity phenomenon a constitutive tensor penalization is employed. A normalized version of the p-norm is used as a global stress measure instead of local stress constraint. A finite element error estimator is considered in the stress constraint calculation. In order to solve the optimization process, Sequential Linear Programming is employed, with all derivatives being calculated analiticaly. A criterion is proposed to remove low density elements, contributing for well-defined structures and reducing significantly the computational time. Checkerboard instability is circumvented with a linear density filter. To reduce the computational time and enhance the performance of the code, a surrogate model is used in inner iterations of the Sequential Linear Programming. The present algorithm was evaluated optimizing four structures, and comparing with variations of the methodolgy and results from other authors, when possible, presenting good results and thus verifying the validity of the procedure.
10

Aplicação de um modelo substituto para otimização estrutural topológica com restrição de tensão e estimativa de erro a posteriori

Varella, Guilherme January 2015 (has links)
Este trabalho apresenta uma metodologia de otimização topológica visando reduzir o volume de uma estrutura tridimensional sujeita a restrição de tensão. A análise estrutural é feita através do método dos elementos finitos, as tensões são calculadas nos pontos de integração Gaussiana e suavizadas. Para evitar problemas associados a singularidades na tensão é aplicado o método de relaxação de tensão, que penaliza o tensor constitutivo. A norma-p é utilizada para simular a função máximo, que é utilizada como restrição global de tensão. O estimador de erro de Zienkiewicz e Zhu é usado para calcular o erro da tensão, que é considerado durante o cálculo da norma-p, tornando o processo de otimização mais robusto. Para o processo de otimização é utilizada o método de programação linear sequencial, sendo todas as derivadas calculadas analiticamente. É proposto um critério para remoção de elementos de baixa densidade, que se mostrou eficiente contribuindo para gerar estruturas bem definidas e reduzindo significativamente o tempo computacional. O fenômeno de instabilidade de tabuleiro é contornado com o uso de um filtro linear de densidade. Para reduzir o tempo dispendido no cálculo das derivadas e aumentar o desempenho do processo de otimização é proposto um modelo substituto (surrogate model) que é utilizado em iterações internas na programação linear sequencial. O modelo substituto não reduz o tempo de cálculo de cada iteração, entretanto reduziu consideravelmente o número de avaliações da derivada. O algoritmo proposto foi testado otimizando quatro estruturas, e comparado com variações do método e com outros autores quando possível, comprovando a validade da metodologia empregada. / This work presents a methodology for stress-constrained topology optimization, aiming to minimize material volume. Structural analysis is performed by the finite element method, and stress is computed at the elemental Gaussian integration points, and then smoothed over the mesh. In order to avoid the stress singularity phenomenon a constitutive tensor penalization is employed. A normalized version of the p-norm is used as a global stress measure instead of local stress constraint. A finite element error estimator is considered in the stress constraint calculation. In order to solve the optimization process, Sequential Linear Programming is employed, with all derivatives being calculated analiticaly. A criterion is proposed to remove low density elements, contributing for well-defined structures and reducing significantly the computational time. Checkerboard instability is circumvented with a linear density filter. To reduce the computational time and enhance the performance of the code, a surrogate model is used in inner iterations of the Sequential Linear Programming. The present algorithm was evaluated optimizing four structures, and comparing with variations of the methodolgy and results from other authors, when possible, presenting good results and thus verifying the validity of the procedure.

Page generated in 0.0868 seconds