• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes

Kunert, Gerd, Nicaise, Serge 10 July 2001 (has links) (PDF)
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz-Zhu (ZZ) type error estimators are derived which are both based on some recovered gradient. Two different, rigorous analytical approaches yield the equivalence of both ZZ error estimators to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by several numerical examples.
2

Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes

Kunert, Gerd, Nicaise, Serge 10 July 2001 (has links)
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz-Zhu (ZZ) type error estimators are derived which are both based on some recovered gradient. Two different, rigorous analytical approaches yield the equivalence of both ZZ error estimators to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by several numerical examples.

Page generated in 0.0794 seconds