31 |
Adaptivity in anisotropic finite element calculationsGrosman, Sergey 09 May 2006 (has links) (PDF)
When the finite element method is used to solve boundary value problems, the
corresponding finite element mesh is appropriate if it is reflects the behavior of the true solution. A posteriori error estimators are suited to construct adequate meshes. They are useful to measure the quality of an approximate solution and to design adaptive solution algorithms. Singularly perturbed problems yield in general solutions with anisotropic features, e.g. strong boundary or interior layers. For such problems it is useful to use anisotropic meshes in order to reach maximal order of convergence. Moreover, the quality of the numerical solution rests on the robustness of the a posteriori error estimation with respect to both the anisotropy of the mesh and the perturbation parameters.
There exist different possibilities to measure the a posteriori error in the energy norm for the singularly perturbed reaction-diffusion equation. One of them is the equilibrated residual method which is known to be robust as long as one solves auxiliary local Neumann problems exactly on each element. We provide a basis for an approximate solution of the aforementioned auxiliary problem and show that this approximation does not affect the quality of the error estimation.
Another approach that we develope for the a posteriori error estimation is the hierarchical error estimator. The robustness proof for this estimator involves some stages including the strengthened Cauchy-Schwarz inequality and the error reduction property for the chosen space enrichment.
In the rest of the work we deal with adaptive algorithms. We provide an overview of the existing methods for the isotropic meshes and then generalize the ideas for the anisotropic case. For the resulting algorithm the error reduction estimates are proven for the Poisson equation and for the singularly perturbed reaction-difussion equation. The convergence for the Poisson equation is also shown.
Numerical experiments for the equilibrated residual method, for the hierarchical
error estimator and for the adaptive algorithm confirm the theory. The adaptive
algorithm shows its potential by creating the anisotropic mesh for the problem
with the boundary layer starting with a very coarse isotropic mesh.
|
32 |
Um estimador de erro a posteriori para a equação do transporte de contaminantes em regime de pequena advecção / A posteriori error estimate for the contaminant transport equation in small advection regimeAlessandro Firmiano de Jesus 19 March 2010 (has links)
Vários modelos computacionais que implementam o transporte de soluto em meio poroso saturado surgem constantemente em publicações científicas devido à suma importância dada à compreensão e previsão do transporte de constituintes dissolvidos em água subterrânea. As soluções numéricas obtidas por esquemas computacionais não estão imunes aos erros de discretização. No entanto, a confiabilidade nos resultados obtidos das complexas operações provenientes da dinâmica de fluidos computacional pode ser aumentada através de estimadores de erro a posteriori que indicam a precisão da solução numérica de um modelo matemático que simula o fenômeno físico de interesse. Neste trabalho é apresentado um estimador residual para a equação parabólica que descreve os fenômenos de advecção-dispersão-reação (ADR) em meio poroso saturado, considerando o transporte em regime de pequena advecção. A solução numérica da equação ADR é obtida pelo método dos elementos finitos que emprega termos upwind para minimizar as inconvenientes oscilações espúrias. A implementação do código computacional para obter essa solução numérica e o seu correspondente erro a posteriori, é feita em linguagem JAVA na plataforma Eclipse seguindo o paradigma da Programação Orientada a Objetos (POO). A solução numérica da equação elíptica do fluxo subterrâneo e o seu estimador de erro com características de recuperação do gradiente, o estimador ZZ, também são implementados no código JAVA. Assim, a solução da equação do transporte é obtida em função da reusabilidade POO prevista na implementação da equação do fluxo. A comparação da solução numérica do modelo ADR 2D com a correspondente solução analítica disponível na literatura, demonstra que o estimador residual apresenta excelentes índices de eficiência. Os resultados numéricos obtidos mostraram que o estimador residual encontra-se limitado inferior e superiormente pelo erro real da solução em malha grosseira. O estimador ZZ mostrou-se inadequado para a análise do erro de aproximação das equações ADR. Os exemplos selecionados para verificação e aplicação do estimador residual abrangem, em diferentes escalas, modelos que descrevem reação de primeira ordem e modelos com fenômenos de sorção e retardamento na migração do contaminante em meio poroso saturado. Em conseqüência, o estimador residual proposto provou ser computável, eficiente e robusto no sentido de abranger uma grande variedade das aplicações dos fenômenos de transporte de contaminantes em meio poroso saturado e regime de pequena advecção. / Several computational models that implement the solute migration in saturated porous media constantly appear in scientific publications due to the great importance given to the understanding and forecast of the solute transport in groundwater. The numerical solutions obtained by computational schemes are not immune to errors related to the discretization process. However, the reliability of the results obtained by the complex operations of the computational fluids dynamics can be enhanced by a posteriori error estimates that indicate the accuracy of the numerical solution. In this work a residual error estimator is presented for the parabolic equation that describes the advection-dispersion-reaction phenomena (ADR) in saturated porous media, considering the transport in small advection regime. The numerical solution of the ADR equation is obtained by the finite element method using upwind terms to minimize the spurious oscillations. The computational code and the correspondent a posteriori error estimates are implemented in Java language following the Object Oriented Programming (OOP) paradigm in Eclipse platform. The numerical solution of the elliptic groundwater flow equation and the respective error estimates with gradient recovery characteristic, the ZZ-estimator, are also implemented in the JAVA code. The solution of the transport equation is obtained as a consequence of the OOP reusability intended in the implementation of the flow equation. The numerical solution of the ADR 2D simulation compared to the analytical solution available in the literature, demonstrate the excellent effectivity index presented by the residual error estimator. The obtained results indicate that the residual error estimator is lower and upper bounded by a solution in coarse mesh. The ZZ-estimator showed to be inadequate for the error analysis of the ADR equations. The examples selected for validation and application of the residual estimator include, in distinct scales, models that describe reaction of first order and models with sorption and retardation phenomena in the pollutant migration in saturated porous media. Therefore, the proposed residual error estimator proved to be computable, efficient and robust in the sense of solving a great variety of applications of transport phenomena in saturated porous media at small advection regime.
|
33 |
A Posteriori Error Analysis of Discontinuous Galerkin Methods for Elliptic Variational InequalitiesPorwal, Kamana January 2014 (has links) (PDF)
The main emphasis of this thesis is to study a posteriori error analysis of discontinuous Galerkin (DG) methods for the elliptic variational inequalities. The DG methods have become very pop-ular in the last two decades due to its nature of handling complex geometries, allowing irregular meshes with hanging nodes and different degrees of polynomial approximation on different ele-ments. Moreover they are high order accurate and stable methods. Adaptive algorithms refine the mesh locally in the region where the solution exhibits irregular behaviour and a posteriori error estimates are the main ingredients to steer the adaptive mesh refinement.
The solution of linear elliptic problem exhibits singularities due to change in boundary con-ditions, irregularity of coefficients and reentrant corners in the domain. Apart from this, the solu-tion of variational inequality exhibits additional irregular behaviour due to occurrence of the free boundary (the part of the domain which is a priori unknown and must be found as a component of the solution). In the lack of full elliptic regularity of the solution, uniform refinement is inefficient and it does not yield optimal convergence rate. But adaptive refinement, which is based on the residuals ( or a posteriori error estimator) of the problem, enhance the efficiency by refining the mesh locally and provides the optimal convergence. In this thesis, we derive a posteriori error estimates of the DG methods for the elliptic variational inequalities of the first kind and the second kind.
This thesis contains seven chapters including an introductory chapter and a concluding chap-ter. In the introductory chapter, we review some fundamental preliminary results which will be used in the subsequent analysis. In Chapter 2, a posteriori error estimates for a class of DG meth-ods have been derived for the second order elliptic obstacle problem, which is a prototype for elliptic variational inequalities of the first kind. The analysis of Chapter 2 is carried out for the general obstacle function therefore the error estimator obtained therein involves the min/max func-tion and hence the computation of the error estimator becomes a bit complicated. With a mild assumption on the trace of the obstacle, we have derived a significantly simple and easily com-putable error estimator in Chapter 3. Numerical experiments illustrates that this error estimator indeed behaves better than the error estimator derived in Chapter 2. In Chapter 4, we have carried out a posteriori analysis of DG methods for the Signorini problem which arises from the study of the frictionless contact problems. A nonlinear smoothing map from the DG finite element space to conforming finite element space has been constructed and used extensively, in the analysis of Chapter 2, Chapter 3 and Chapter 4. Also, a common property shared by all DG methods allows us to carry out the analysis in unified setting. In Chapter 5, we study the C0 interior penalty method for the plate frictional contact problem, which is a fourth order variational inequality of the second kind. In this chapter, we have also established the medius analysis along with a posteriori analy-sis. Numerical results have been presented at the end of every chapter to illustrate the theoretical results derived in respective chapters. We discuss the possible extension and future proposal of the work presented in the Chapter 6. In the last chapter, we have documented the FEM codes used in the numerical experiments.
|
34 |
Stratégie de raffinement automatique de maillage et méthodes multi-grilles locales pour le contact : application à l'interaction mécanique pastille-gaine / Automatic mesh refinement and local multigrid methods for contact problems : application to the pellet-cladding mechanical interactionLiu, Hao 28 September 2016 (has links)
Ce travail de thèse s’inscrit dans le cadre de l’étude de l’Interaction mécanique Pastille-Gaine (IPG) se produisant dans les crayons combustibles des réacteurs à eau pressurisée. Ce mémoire porte sur le développement de méthodes de raffinement de maillage permettant de simuler plus précisément le phénomène d’IPG tout en conservant des temps de calcul et un espace mémoire acceptables pour des études industrielles. Une stratégie de raffinement automatique basée sur la combinaison de la méthode multi-grilles Local Defect Correction (LDC) et l’estimateur d’erreur a posteriori de type Zienkiewicz et Zhu est proposée. Cette stratégie s’appuie sur l’erreur fournie par l’estimateur pour détecter les zones à raffiner constituant alors les sous-grilles locales de la méthode LDC. Plusieurs critères d’arrêt sont étudiés afin de permettre de stopper le raffinement quand la solution est suffisamment précise ou lorsque le raffinement n’apporte plus d’amélioration à la solution globale.Les résultats numériques obtenus sur des cas tests 2D élastiques avec discontinuité de chargement permettent d’apprécier l’efficacité de la stratégie proposée.Le raffinement automatique de maillage dans le cas de problèmes de contact unilatéral est ensuite abordé. La stratégie proposée dans ce travail s’étend aisément au raffinement multi-corps à condition d’appliquer l’estimateur d’erreur sur chacun des corps séparément. Un post-traitement est cependant souvent nécessaire pour garantir la conformité des zones de raffinement vis-à-vis des frontières de contact. Une variété de tests numériques de contact entre solides élastiques confirme l’efficacité et la généricité de la stratégie proposée. / This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local subgrids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore.Numerical results for elastic 2D test cases with pressure discontinuity shows the efficiency of the proposed strategy.The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multibody refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy.
|
35 |
Formulation éléments finis variationnelle adaptative et calcul massivement parallèle pour l’aérothermique industrielle / Variational adaptive finite element formulation and massively parallel computing for aerothermal industry applicationsBazile, Alban 25 April 2019 (has links)
Considérant les récents progrès dans le domaine du Calcul Haute Performance, le but ultime des constructeurs aéronautiques tels que Safran Aircraft Engines (SAE) sera de simuler un moteur d'avion complet, à l'échelle 1, utilisant la mécanique des fluides numérique d'ici 2030. Le but de cette thèse de doctorat est donc de donner une contribution scientifique à ce projet. En effet, ce travail est consacré au développement d'une méthode élément finis variationnelle adaptative visant à améliorer la simulation aérothermique du refroidissement des aubes de turbine. Plus précisément, notre objectif est de développer une nouvelle méthode d'adaptation de maillage multi-échelle adaptée à la résolution des transferts thermiques hautement convectifs dans les écoulements turbulents. Pour cela, nous proposons un contrôle hiérarchique des erreurs, basé sur des estimateurs d'erreur sous-échelle de type VMS. La première contribution de ce travail est de proposer une nouvelle méthode d'adaptation de maillage isotrope basée sur ces estimateurs d'erreur sous-échelle. La seconde contribution est de combiner (i) un indicateur d'erreur d'interpolation anisotrope avec (ii) un estimateur d'erreur sous-échelle pour l'adaptation anisotrope de maillage. Les résultats sur des cas analytiques 2D et 3D montrent que la méthode d'adaptation de maillage multi-échelle proposée nous permet d'obtenir des solutions hautement précises utilisant moins d'éléments, en comparaison avec les méthodes d'adaptation de maillage traditionnelles. Enfin, nous proposons dans cette thèse une description des méthodes de calcul parallèle dans Cimlib-CFD. Ensuite, nous présentons les deux systèmes de calcul utilisés pendant le doctorat. L'un d'eux est, en particulier, le super-calculateur GENCI Occigen II qui nous a permit de produire des résultats numériques sur un cas d'aube de turbine complète composé de 39 trous en utilisant des calculs massivement parallèles. / By 2030, considering the progress of HPC, aerospace manufacturers like Safran Aircraft Engines (SAE), hope to be able to simulate a whole aircraft engine, at full scale, using Computational Fluid Dynamic (CFD). The goal of this PhD thesis is to bring a scientific contribution to this research framework. Indeed, the present work is devoted to the development of a variational adaptive finite element method allowing to improve the aerothermal simulations related to the turbine blade cooling. More precisely, our goal is to develop a new multiscale mesh adaptation technique, well suited to the resolution of highly convective heat transfers in turbulent flows. To do so, we propose a hierarchical control of errors based on recently developed subscales VMS error estimators. The first contribution of this work is then to propose a new isotropic mesh adaptation technique based on the previous error estimates. The second contribution is to combine both (i) the coarse scales interpolation error indicator and (ii) the subscales error estimator for anisotropic mesh adaptation. The results on analytic 2D and 3D benchmarks show that the proposed multiscale mesh adaptation technique allows obtaining highly precise solutions with much less elements in comparison with other mesh adaptation techniques. Finally, we propose in this thesis a description of the parallel software capabilities of Cimlib-CFD. Then, we present the two hardware systems used during this PhD thesis. The first one is the lab's cluster allowing the development of numerical methods. The second one however, is the GENCI Occigen II supercomputer which allows producing numerical results using massively parallel computations. In particular, we present a more realistic industrial concerning the cooling of a complete turbine vane composed by 39 holes.
|
36 |
Adaptivity in anisotropic finite element calculationsGrosman, Sergey 21 April 2006 (has links)
When the finite element method is used to solve boundary value problems, the
corresponding finite element mesh is appropriate if it is reflects the behavior of the true solution. A posteriori error estimators are suited to construct adequate meshes. They are useful to measure the quality of an approximate solution and to design adaptive solution algorithms. Singularly perturbed problems yield in general solutions with anisotropic features, e.g. strong boundary or interior layers. For such problems it is useful to use anisotropic meshes in order to reach maximal order of convergence. Moreover, the quality of the numerical solution rests on the robustness of the a posteriori error estimation with respect to both the anisotropy of the mesh and the perturbation parameters.
There exist different possibilities to measure the a posteriori error in the energy norm for the singularly perturbed reaction-diffusion equation. One of them is the equilibrated residual method which is known to be robust as long as one solves auxiliary local Neumann problems exactly on each element. We provide a basis for an approximate solution of the aforementioned auxiliary problem and show that this approximation does not affect the quality of the error estimation.
Another approach that we develope for the a posteriori error estimation is the hierarchical error estimator. The robustness proof for this estimator involves some stages including the strengthened Cauchy-Schwarz inequality and the error reduction property for the chosen space enrichment.
In the rest of the work we deal with adaptive algorithms. We provide an overview of the existing methods for the isotropic meshes and then generalize the ideas for the anisotropic case. For the resulting algorithm the error reduction estimates are proven for the Poisson equation and for the singularly perturbed reaction-difussion equation. The convergence for the Poisson equation is also shown.
Numerical experiments for the equilibrated residual method, for the hierarchical
error estimator and for the adaptive algorithm confirm the theory. The adaptive
algorithm shows its potential by creating the anisotropic mesh for the problem
with the boundary layer starting with a very coarse isotropic mesh.
|
37 |
Adaptive least-squares finite element method with optimal convergence ratesBringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert.
Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution.
This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
|
Page generated in 0.0796 seconds