• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 48
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterization of an altered MoFe protein from a nifV- strain from Azotobacter vinelandii

Comaratta, Leonard M. 13 November 1998 (has links)
The site of substrate binding and reduction for the nitrogenase complex is located on the iron molybdenum cofactor (FeMo-co) which is contained within the a-subunit of the molybdenum iron protein. FeMo co consists of a metal sulfur core composed of an FeS cluster bridged by three inorganic sulfides to a MoFeS cluster. An organic acid, homocitrate, is coordinated to the Mo atom through its 2-carboxy and 2-hydroxy groups. Homocitrate is formed by the condensation of acetyl-CoA and a-ketoglutarate, which is catalyzed by a homocitrate synthase encoded by nifV. By deleting the nifV gene from Azotobacter vinelandii we were able to study the role of homocitrate in nitrogenase catalysis. A poly-histidine tail was incorporated into the C-termini of the a-subunit permitting isolation of the homocitrateless MoFe protein by using metal affinity chromatography. We have found that the addition of a poly-histidine tag does not alter the catalytic behavior of the native enzyme. In NifV- strains of Klebsiella pneumoniae, citrate has been found to replace homocitrate as the organic constituent of FeMo-co. We have found no evidence this is so in A. vinelandii. Gas chromatography mass spectrophotometry studies indicate little or no organic acids are associated with FeMo-co. We examined the catalytic properties of the NifV- MoFe protein In the mutant, H2 evolution is inhibited by the addition of CO, unlike in the wild type. We have found that the NifV- MoFe protein from A. vinelandii is able to catalyze the reduction of acetylene to both ethylene and ethane. / Master of Science
12

The catalytic mechanism of the cytochrome bd terminal oxidase complex

Jünemann, Susanne January 1995 (has links)
No description available.
13

Azotobacter vinelandii nitrogenase : role of the MoFe protein [alpha]-subunit histidine-195 residue in catalysis /

Kim, ChulHwan, January 1994 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 157-184). Also available via the Internet.
14

Das Molybdän-Speicherprotein von Azotobacter vinelandii grundlegende Untersuchungen an einem neuartigen Metalloprotein /

Fenske, Dirk. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bielefeld.
15

Ultrastructure of Azotobacter Vinelandii

Chao, Ying L. (Ying Liang) 12 1900 (has links)
The purpose of this research was to reveal the morphological and cytological characteristics of Azotobacter vinelandii cells cultured in dialyzed soil medium. Culture samples taken at two, four, eight, sixteen and thirty-two days were prepared and examined with the electron microscope. Comparisons of the morphology of Azotobacter vinelandii grown in dialyzed soil medium with those grown in Burk's nitrogen-free, chemically-defined medium were done.
16

Studies of Encystment and Germination in Azotobacter Vinelandii

Cagle, Gerald Dean 05 1900 (has links)
Light and electron microscopy were employed to study the encystment and germination processes in Azotobacter. Data obtained from frozen-etched replicas and chemically fixed cells revealed that as encystment occurs, the cells become rounded, and lose their motility.
17

Morphology of Azotobacter Vinelandii Grown on Nutrient Agar

Hartnett, Glenna Hollar 05 1900 (has links)
This research deals with the changes in cellular morphology of Azotobacter vinelandii cultured on nutrient agar. In particular, this study is concerned with the formation of intracellular particles and a description of their size and sequence of appearance. Changes in morphology of Azotobacter vinelandii grown on nutrient agar are contrasted photographically with morphology of Azotobacter vinelandii grown on Burk's nitrogen free medium.
18

Endogenous Nucleotide Pools in Growing Cells of Azotobacter Vinelandii

Lee, Yick-Shun 08 1900 (has links)
The objective of this investigation was to examine the changes in the nucleotide pools of Azotobacter vinelandii during the growth cycle. Endogenous ribonucleotides were extracted from A. vinelandii using trichloroacetic acid (TCA; 12% w/v). The 5' mono-, di- and triphosphates of adenine, guanine, uracil and cytosine were separated and quantified by anion-exchange high performance liquid chromatography. Results indicated that the adenylate energy charge of A. vinelandii paralleled the growth rate during exponential phase and that it declined rapidly as the stationary phase was reached. In addition, the amount of each nucleotide in A. vinelandii tended to increase in the logarithmic phase and decrease in the stationary phase in a similar manner to the energy charge.
19

Substratos alternativos para a produção de poli-hidroxibutirato e alginato por Azotobacter vinelandii

Silva, Adriana Navarro da [UNESP] 16 March 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:03Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-03-16Bitstream added on 2014-06-13T20:01:30Z : No. of bitstreams: 1 silva_an_dr_sjrp.pdf: 845355 bytes, checksum: bf12e08f381ee2126b3f6f0827cd993a (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Atualmente a destinação do lixo é uma das grandes preocupações da organização urbana e os problemas ambientais causados pela produção e acúmulo de materiais plásticos de origem petroquímica têm incentivado muitos países a realizarem estudos de gerenciamento do volume de lixo sólido, incluindo a diminuição de resíduos plásticos por meio do desenvolvimento de bioplásticos. Os bioplásticos possuem propriedades semelhantes às dos plásticos convencionais e apresentam a vantagem de serem facilmente degradados pela ação de microrganismos no ambiente, podendo citar como exemplo os poli-hidroxialcanoatos (PHA), dentre eles o poli-hidroxibutirato (PHB). Estes polímeros podem representar até 80% da massa seca total da célula, tendo como característica principal a biodegradabilidade em solos e a biocompatibilidade com o tecido animal. Entre os microrganismos produtores de PHAs, a bactéria Azotobacter vinelandii pode acumular grandes quantidades de PHB intracelular com a vantagem de utilizar durante seu crescimento uma ampla variedade de açúcares como os encontrados em melaço de cana-de-açúcar, beterraba e xarope de milho, além de resíduos da suinocultura, agroindustriais, etc. Além do PHB, a bactéria A. vinelandii é capaz de produzir alginato, composto muito empregado na área de análogos de frutas ou produtos tipo imitação como: fatias de pimentão para recheios de azeitonas, imitação de anéis de cebola, imitações de caviar, carne, pescados, produtos marinhos, etc. Tendo em vista que os principais fatores limitantes para a produção de biopolímeros estão associados, principalmente, com os custos dos substratos e ao fato de que muitos microrganismos são patogênicos dificultando a sua aceitação pela comunidade em geral, este trabalho teve como objetivo utilizar... / Currently, the waste disposal is a major concern of urban organization and the environmental problems caused by production and accumulation of petrochemical plastics have encouraged many countries to management studies of the solid waste volume, including the waste plastics reduction through the bioplastics development. Bioplastics have similar properties to conventional plastics and the advantage of being easily degraded by the microorganisms action in the environment, for example, poly-hydroxyalcanoatos (PHA), including poly-hydroxybutyrate (PHB). These polymers can represent up to 80% of total dry mass of the cell, having as main feature the biodegradability in soil and the biocompatibility with animal tissue. Among the microorganisms producing PHAs, the bacterium Azotobacter vinelandii can accumulate large amounts of intracellular PHB with the advantage that they grow a wide sugars variety like those found in molasses cane sugar, beet sugar and corn syrup, and swine waste, agribusiness, etc.. Besides the PHB, the bacterium A. vinelandii is able to produce alginate, a very useful compound in the similar area of type of fruit and imitation as sliced peppers for stuffing olives, onion rings imitation, caviar, meat, fish and marine products imitation, etc.. Given that the main limiting factors for the biopolymers production are mainly associated with the substrates costs and the fact that many microorganisms are pathogenic hindering its acceptance by the community in general, this study aimed to use the pollutant by-products environment (residual oil frying, glycerin, cassava wastewater – “manipueira”, vinasse and wastewater industry carbonated beverages or soft drinks) as a substrate for the poly-hydroxybutyrate and alginate production by non-pathogenic bacterium Azotobacter vinelandii. Fermentations... (Complete abstract click electronic access below)
20

Studies on the Regulation of the Assimilatory Nitrate Reductase Operon in Azotobacter vinelandii

Wang, Baomin January 2009 (has links)
Azotobacter vinelandii is a free-living diazotroph. This bacterium fixes atmospheric nitrogen in different environments using three genetically distinct nitrogenases. A. vinelandii is also capable of utilizing nitrate and nitrite from the environment. Nitrate is reduced sequentially into nitrite and ammonia. The assimilatory nitrate reductase and nitrite reductase are encoded by the nasAB operon. Previous genetic studies identified a number of factors that influence nasAB expression. However, the molecular mechanisms controlling the expression of nasAB are unclear.The current study was initiated to characterize the region preceding the nasAB operon which was previously implicated in its regulation and to further study the molecular mechanisms of nasAB regulation. The results confirm that nasAB is subject to multiple layers of regulation. The operon is under the control of an NtrC-dependent promoter; nitrate/nitrite induction occurs at the post-transcriptional level via antitermination within the nasAB leader region; and nitrate/nitrite induction is mediated by NasS/NasT, a sensor-antiterminator two-component regulatory system.Together, these data suggest a model for the regulation of the assimilatory nitrate reductase operon in A. vinelandii.

Page generated in 0.0724 seconds