• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Putative lipoproteins of Streptococcus agalactiae identified by bioinformatic genome analysis

Harrington, Dean J., Sutcliffe, I.C. January 2004 (has links)
Streptococcus agalactiae is a significant pathogen causing invasive disease in neonates and thus an understanding of the molecular basis of the pathogenicity of this organism is of importance. N-terminal lipidation is a major mechanism by which bacteria can tether proteins to membranes. Lipidation is directed by the presence of a cysteine-containing lsquolipoboxrsquo within specific signal peptides and this feature has greatly facilitated the bioinformatic identification of putative lipoproteins. We have designed previously a taxon-specific pattern (G+LPP) for the identification of Gram-positive bacterial lipoproteins, based on the signal peptides of experimentally verified lipoproteins (Sutcliffe I.C. and Harrington D.J. Microbiology 148: 2065¿2077). Patterns searches with this pattern and other bioinformatic methods have been used to identify putative lipoproteins in the recently published genomes of S. agalactiae strains 2603/V and NEM316. A core of 39 common putative lipoproteins was identified, along with 5 putative lipoproteins unique to strain 2603/V and 2 putative lipoproteins unique to strain NEM316. Thus putative lipoproteins represent ca. 2% of the S. agalactiae proteome. As in other Gram-positive bacteria, the largest functional category of S. agalactiae lipoproteins is that predicted to comprise of substrate binding proteins of ABC transport systems. Other roles include lipoproteins that appear to participate in adhesion (including the previously characterised Lmb protein), protein export and folding, enzymes and several species-specific proteins of unknown function. These data suggest lipoproteins may have significant roles that influence the virulence of this important pathogen.
2

Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron

Bray, B.A., Sutcliffe, I.C., Harrington, Dean J. 04 November 2008 (has links)
No / Metal ion acquisition and homeostasis are essential for bacterial survival, growth and physiology. A family of metal ion, ABC-type import systems have been identified in Gram-positive bacteria, in which the solute-binding proteins are predicted to be membrane-anchored lipoproteins. The prediction that the MtsA protein of Streptococcus agalactiae A909 is a lipoprotein was confirmed. The expression of MtsA was co-ordinately regulated by the presence of both manganese and ferrous ions suggesting that MtsA may be involved in the uptake of both these ions. MtsA was shown to be expressed at levels of ferrous ions known to be present in amniotic fluid, a growth medium for S. agalactiae during neonatal infection.
3

Putative lipoproteins of Streptococcus agalactiae identified by bioinformatic genome analysis

Sutcliffe, I.C., Harrington, Dean J. 05 1900 (has links)
No / Streptococcus agalactiae is a significant pathogen causing invasive disease in neonates and thus an understanding of the molecular basis of the pathogenicity of this organism is of importance. N-terminal lipidation is a major mechanism by which bacteria can tether proteins to membranes. Lipidation is directed by the presence of a cysteine-containing 'lipobox' within specific signal peptides and this feature has greatly facilitated the bioinformatic identification of putative lipoproteins. We have designed previously a taxon-specific pattern (G+LPP) for the identification of Gram-positive bacterial lipoproteins, based on the signal peptides of experimentally verified lipoproteins (Sutcliffe I.C. and Harrington D.J. Microbiology 148: 2065-2077). Patterns searches with this pattern and other bioinformatic methods have been used to identify putative lipoproteins in the recently published genomes of S. agalactiae strains 2603/V and NEM316. A core of 39 common putative lipoproteins was identified, along with 5 putative lipoproteins unique to strain 2603/V and 2 putative lipoproteins unique to strain NEM316. Thus putative lipoproteins represent ca. 2% of the S. agalactiae proteome. As in other Gram-positive bacteria, the largest functional category of S. agalactiae lipoproteins is that predicted to comprise of substrate binding proteins of ABC transport systems. Other roles include lipoproteins that appear to participate in adhesion (including the previously characterised Lmb protein), protein export and folding, enzymes and several species-specific proteins of unknown function. These data suggest lipoproteins may have significant roles that influence the virulence of this important pathogen.
4

Studies on Uptake of Thiamin Analogs by a Thiamin Deficient E. coli Mutant Strain

Olivard, Sarah 14 March 2013 (has links)
Thiamin transport in Escherichia coli is a model system to establish the tolerance of derivatives for transport into the cell. Since little is known about what types of thiamin derivatives may be successfully taken into the cell through the transport system, a series of thiamin derivatives are synthesized. A thiamin amino analog is synthesized and tested to determine the use of the analog as an alternate source of thiamin for growth of an E. coli thiamin mutant. Formate, acetate, and benzoate thiamin esters are synthesized and tested as alternate sources for growth of an E. coli thiamin mutant. Thiamin esters or amides may provide a scaffold for attaching other small molecules of interest to be imported into the cell by thiamin transport system. Thiamin containing formate, acetate, and benzoate esters were synthesized and tested as alternative growth source for thiamin using an E. coli mutant strain incapable of synthesizing thiamin. All three synthesized ester thiamin forms gave a zone of growth determined by disk-assay study. Also, an amino thiamin is synthesized to determine uptake through thiamin transport system by growth study using an E. coli mutant incapable of synthesizing thiamin. The growth curves resulting show concentration-dependent growth in the absence of natural thiamin, indicating amino thiamin is taken up by thiamin transport system as an alternate source of thiamin for growth. More characterization of the thiamin transport system is desired in order to develop thiamin conjugates of interest such as a photoaffinity probe for isolating thiamin-utilizing enzymes.
5

Axial Ligand Mutant: H229A

Nguyen, Nhung Phuong 08 August 2008 (has links)
Many pathogenic bacteria use their iron acquisition mechanisms to live inside hosts. Streptococcus pyogenes is a pathogenic bacterium that uses streptococcal iron acquisition ABC transporter to obtain heme. SiaA (HtsA, spy1795), a lipoprotein located on the cell surface, serves as a heme binding protein. To understand the iron-uptake mechanism, histidine 229, one of the two proposed axial ligands in SiaA, was mutated to alanine. SiaA H229A was expressed in E. coli, lysed by French Press, and purified by fast protein liquid chromatography (FPLC). SDS-PAGE indicated that pure protein was isolated. Nickel affinity FPLC gave purer H229A when 0.5 M imidazole was added to the binding buffer. Overall, histidine 229 is likely to be an axial ligand in wild type SiaA, as shown by the fact the mutant readily lost heme as evidenced by UV-vis spectra.
6

ATP-Binding-Cassette Transporters in Biliary Efflux and Drug-Induced Liver Injury

Pedersen, Jenny M. January 2013 (has links)
Membrane transport proteins are known to influence the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. At the onset of this thesis work, only a few structure-activity models, in general describing P-glycoprotein (Pgp/ABCB1) interactions, were developed using small datasets with little structural diversity. In this thesis, drug-transport protein interactions were explored using large, diverse datasets representing the chemical space of orally administered registered drugs. Focus was set on the ATP-binding cassette (ABC) transport proteins expressed in the canalicular membrane of human hepatocytes. The inhibition of the ABC transport proteins multidrug-resistance associated protein 2 (MRP2/ABCC2) and bile salt export pump (BSEP/ABCB11) was experimentally investigated using membrane vesicles from cells overexpressing the investigated proteins and sandwich cultured human hepatocytes (SCHH). Several previously unknown inhibitors were identified for both of the proteins and predictive in silico models were developed. Furthermore, a clear association between BSEP inhibition and clinically reported drug induced liver injuries (DILI) was identified. For the first time, an in silico model that described combined inhibition of Pgp, MRP2 and breast cancer resistance protein (BCRP/ABCG2) was developed using a large, structurally diverse dataset. Lipophilic weak bases were more often found to be general ABC inhibitors in comparison to other drugs. In early drug discovery, in silico models can be used as predictive filters in the drug candidate selection process and membrane vesicles as a first experimental screening tool to investigate protein interactions. In summary, the present work has led to an increased understanding of molecular properties important in ABC inhibition as well as the potential influence of ABC proteins in adverse drug reactions. A number of previously unknown ABC inhibitors were identified and predictive computational models were developed.

Page generated in 0.069 seconds