• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SIAA and Neat2 Heme Binding Proteins from Streptococcus Pyogenes

Delgado, Giselle M. 01 December 2009 (has links)
The bacterium Streptococcus pyogenes requires heme, which is taken up via an ABC transporter. An understanding of this pathway may result in new approaches to antibacterial agents. Both SiaA and NEAT2 (NEAr Transporter 2) are proteins involved in heme binding. One of the axial ligands of SiaA, His 229, was purified to study how mutagenesis affects heme binding. UV-visible studies showed a small band at 420 nm with respect to the protein band at 288 nm which probably indicates that heme was lost easily from this mutant. We have also worked to optimize the yield of Shr-NEAT2 by changing different variables. For each of the batches, the yield of holoNEAT2 was calculated by UV-visible spectroscopy. Increasing oxygen during growth did not improve holoNEAT2 yield. On the other hand, lower temperature, decrease in time after induction, and addition of ALA all increased the protein production.
2

SiaA: A Heme Protein

Libkind, Marianna 19 February 2007 (has links)
The protein SiaA (Streptococcal iron acquisition) is involved in heme uptake in the bacterium Streptococcus pyogenes. It is difficult to obtain this protein in its fully holo form (completely loaded with heme). To increase the concentration of heme in the growing cell, we added ä-aminolevulinic acid (ALA) and ferrous sulfate (FeSO4), precursors of heme, to the growth media. Neither increasing the concentration of heme in vivo, nor growth at lower temperature for longer times, increased the production of holoprotein. The classical method of measuring the concentration of heme in a newly discovered heme protein is cumbersome. We have developed an improved method, which gives a solution that is more stable and has a cleaner spectrum. With further development, this new technique may replace the classical assay. Background information on S. pyogenes, SiaA, ABC transporters, heme biosynthesis, and the pyridine hemochrome assay are described.
3

Expression, Purification, and Characterization of the SIAA M79A Protein

Basden, Brian 24 January 2007 (has links)
Some pathogenic bacteria derive significant amounts of iron heme from their hosts. In this study we investigated SiaA, a heme binding protein from Streptococcus pyogenes. The wildtype methionine79 putative axial ligand was mutated to alanine. SiaA M79A was expressed in E. coli in three production runs, lysed by sonication or French press, and purified by fast protein liquid chromatography (FPLC). Nickel affinity FPLC was found to give much purer SiaA when 30 mM imidazole was added to the binding buffer. The protocol using extensive sonication resulted in SiaA weighing 30464 Da. The protocol using French press resulted in SiaA weighting 33358 Da. Despite the difference in masses, the two forms of SiaA interacted with heme similarly.
4

SiaA: A Heme Protein

Libkind, Marianna 19 February 2007 (has links)
The protein SiaA (Streptococcal iron acquisition) is involved in heme uptake in the bacterium Streptococcus pyogenes. It is difficult to obtain this protein in its fully holo form (completely loaded with heme). To increase the concentration of heme in the growing cell, we added ä-aminolevulinic acid (ALA) and ferrous sulfate (FeSO4), precursors of heme, to the growth media. Neither increasing the concentration of heme in vivo, nor growth at lower temperature for longer times, increased the production of holoprotein. The classical method of measuring the concentration of heme in a newly discovered heme protein is cumbersome. We have developed an improved method, which gives a solution that is more stable and has a cleaner spectrum. With further development, this new technique may replace the classical assay. Background information on S. pyogenes, SiaA, ABC transporters, heme biosynthesis, and the pyridine hemochrome assay are described.
5

Characterization of the HEME Uptake Pathway Proteins from Streptococcus Pyogenes and Corynebacterium Diphtheriae

Akbas, Neval - 25 June 2012 (has links)
In Streptococcus pyogenes, the protein SiaA (HtsA) is part of a heme uptake pathway system and involved in heme transfer from Shp to the ABC transporter. SiaA mutants, in which alanine replaces the axial histidine (H229) and methionine (M79) ligands, as well as a lysine (K61) and cysteine (C58) located near the heme propionates, are reported. Studies on a mutant of a cysteine expected to be at a distance from the propionates (C47A) are also reported. The coordination state and spin state of the selected mutants were determined via Resonance Raman studies. The pKa values of mutants ranged from 9.0 to 9.4, which were close to the pKa of the WT SiaA (9.7). The midpoint reduction potential of lysine (K61A) mutant was determined by spectroelectrochemical titration to be 61 ± 3 mV vs. SHE, similar to the WT protein (68 ± 3 mV). The addition of guanidinium hydrochloride resulted in protein denaturation that could show more than one process and occurred over days. The ease of protein unfolding was directly related to the extent of interaction of the residues with the heme: changes in the axial ligands resulted in far greater changes in heme protein stability than changes in the residues near the heme propionates. The causative agent of diphtheriae, Corynebacterium diphtheriae, imports heme via an ABC uptake transporter. In this research, two of the five proteins in the heme uptake pathway of C. diphtheriae were studied. These proteins were HmuT, lipoprotein component of the ABC transporter, and HtaA, the heme receptor. UV-visible spectroscopy and fluorescence spectroscopy showed that HmuT protein as isolated bound a porphyrin, rather than heme. Electrospray ionization mass spectrometry (ESI-MS) studies suggested that two tetrapyrroles were bound. To assess stability of this protein towards heme release, thermal denaturation studies were performed. For HtaA, UV-visible and fluorescence spectroscopy also showed the protein as isolated was also bound a porphyrin, rather than heme. Homology studies showed that HtaA protein is quiet distant from homologous heme uptake proteins and could be a member of novel heme binding domain family.
6

Expression, Purification, and Characterization of the SIAA M79A Protein

Basden, Brian 24 January 2007 (has links)
Some pathogenic bacteria derive significant amounts of iron heme from their hosts. In this study we investigated SiaA, a heme binding protein from Streptococcus pyogenes. The wildtype methionine79 putative axial ligand was mutated to alanine. SiaA M79A was expressed in E. coli in three production runs, lysed by sonication or French press, and purified by fast protein liquid chromatography (FPLC). Nickel affinity FPLC was found to give much purer SiaA when 30 mM imidazole was added to the binding buffer. The protocol using extensive sonication resulted in SiaA weighing 30464 Da. The protocol using French press resulted in SiaA weighting 33358 Da. Despite the difference in masses, the two forms of SiaA interacted with heme similarly.
7

Axial Ligand Mutant: H229A

Nguyen, Nhung Phuong 08 August 2008 (has links)
Many pathogenic bacteria use their iron acquisition mechanisms to live inside hosts. Streptococcus pyogenes is a pathogenic bacterium that uses streptococcal iron acquisition ABC transporter to obtain heme. SiaA (HtsA, spy1795), a lipoprotein located on the cell surface, serves as a heme binding protein. To understand the iron-uptake mechanism, histidine 229, one of the two proposed axial ligands in SiaA, was mutated to alanine. SiaA H229A was expressed in E. coli, lysed by French Press, and purified by fast protein liquid chromatography (FPLC). SDS-PAGE indicated that pure protein was isolated. Nickel affinity FPLC gave purer H229A when 0.5 M imidazole was added to the binding buffer. Overall, histidine 229 is likely to be an axial ligand in wild type SiaA, as shown by the fact the mutant readily lost heme as evidenced by UV-vis spectra.
8

I. Characterization of Sulfonated Phthalocyanines by Mass Spectrometry. II. Characterization of SIAA, a Streptococcal Heme-Binding Protein Associated with a Heme ABC Transport System

Sook, Brian R 22 April 2008 (has links)
Sulfonated phthalocyanines were characterized using capillary electrophoresis and mass spectrometry. Derivatives investigated included the copper, cobalt, zinc and metal-free sulfonated phthalocyanines. The electropherograms of commercially available copper phthalocyanine-3,4',4'',4'''-tetrasulfonic acid and 4,4',4'',4'''-tetrasulfonic acid were very different, consistent with the latter compound having a structure that is not fully sulfonated. Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) were used to characterize the sulfonated phthalocyanines. Mass spectral evidence was obtained for a pentasulfonated species of both the metal-free phthalocyanine and zinc phthalocyanine when these species were made by sulfonation of the metal-free phthalocyanine (followed by zinc insertion in the latter case). Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The heme binding protein (HBP) of this transporter is SiaA (HtsA). Several biophysical techniques were used to determine the coordination state, and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggested that the heme is six-coordinate and low spin in both oxidation states of the protein, with methionine and histidine as axial ligands. The pKa of SiaA was determined, as were the reductive and oxidative midpoint potentials. Guanidinium titration studies of wild-type SiaA showed that the ferric state is less stable than the ferrous state. Free energy of unfolding values [ÄG(H2O)] for the oxidized and reduced proteins were 7.3 ± 0.8 and 16.0 ± 3.6 kcal mol−1, respectively. Denaturation of the histidine mutant H229A was not able to be followed via absorbance spectrometry, possibly due to the large amount of apoprotein present or to non-specific binding of the heme in the binding pocket. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.

Page generated in 0.0352 seconds