• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 18
  • 10
  • 5
  • 5
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 105
  • 105
  • 55
  • 45
  • 23
  • 22
  • 21
  • 20
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A study of power electronic building block (PEBB)-based integrated shipboard power systems during reconfiguration

Adediran, Adeoti Taiwo 30 September 2004 (has links)
The U.S. Navy has developed in their ships, and is continually improving, electric propulsion, ship service power, and electric loads. The latest topology under design is the integrated power system (IPS). The IPS entails the all electric ship concept with electric propulsion, direct current (DC) distribution, and modular technology. In the all electric ship concept, ship propulsion and ship service loads are powered by alternating current (AC) generation. For the IPS, power electronics conversion is to be utilized to convert alternating current (AC) generation to direct current (DC) distribution. As state-of-the-art power electronics, the Navy plans to use power electronic building blocks (PEBB) technology in its IPS. A U.S. naval shipboard power system is required to be a highly reconfigurable system to enhance its survivability and reliability. Reconfiguration is a change in the shipboard power system state for various reasons such as new topology, changing missions and emergencies. It was decided to study the behavior of a PEBB-based integrated shipboard power system during reconfiguration. Since no real time operation data was available, the problem was studied through the simulation of reconfiguration scenarios on a scaled-down computer model of an IPS in MATLAB. Reconfiguration scenarios were determined and staged, and an AC/DC power system stability assessment methodology was applied by decoupling the IPS test system around an intrazonal bus. The coupled system of the test IPS, consisted of two dynamic 4160 VAC generators, two rectifiers, two DC-DC converters between the rectifiers' output looped bus and the downstream intrazonal 775V busses, inverters, buck converters, AC loads and DC loads. There was modeling of excitation perturbations which introduced errors in the assessment of the stability requiring an approximation analysis. The study found that the DC bus of interest was stable for all nine reconfiguration scenarios staged, but it found that other busses were not stable for two of the scenarios. The study further found that lower stability margins occurred at lower frequencies of about 1Hz for stable scenarios. It concluded that there were tangible benefits to advancing the shipboard power system architecture to the IPS topology because of the good stability results.
12

Hybrid simulation of AC-DC power systems

Anderson, Glenn Warwick Jan January 1995 (has links)
Transient stability studies are primarily concerned with the generator response of ac power systems and use only steady state type equations to model HVdc converter terminals. These equations are adequate for small disturbances at the converter terminals but cannot accurately represent a converters behaviour during, and through its recovery of, a significant transient disturbance. A detailed three phase electromagnetic analysis is necessary to describe the converters correct behaviour. This thesis describes an accurate and effective hybrid method combining these two types of studies, for analyzing dynamically fast devices such as HVdc converters within ac power systems. Firstly, conventional techniques are reviewed for both a transient stability analysis of power systems and for an electromagnetic transient analysis of HVdc converters. This review deals in particular with the two programs that constitute the hybrid developed in this thesis. Various techniques are then examined to efficiently and accurately pass the dynamic effects of an HVdc link to an ac system stability study, and the dynamic effects of an ac system to a detailed HVdc link study. An optimal solution is derived to maximise the inherent advantages of a hybrid. Finally, the hybrid is applied to a test system and its effectiveness in performing its task is shown.
13

Retificador boost entrelaçado com elevado fator de potência e sem ponte de diodos

Silva, Luciano de Souza da Costa e [UNESP] 15 December 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-12-15Bitstream added on 2014-06-13T18:49:30Z : No. of bitstreams: 1 silva_lsc_me_ilha.pdf: 2144752 bytes, checksum: 39f1f729cd628eedd60a6b582fefd576 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Este trabalho propõe um conversor CA-CC, modulado por largura de pulso (PWM), de elevado fator de potência, dotado de um controle variável da razão cíclica. O estágio de potência do conversor pré-regulador do fator de potência (PFP) proposto é composto por múltiplas células entrelaçadas. A integração das técnicas de entrelaçamento (interleaving) à técnica de eliminação da ponte retificadora da entrada (bridgeless) busca diminuir as perdas de energia e distribuir os esforços de corrente nos semicondutores da estrutura conversora de potência. O levantamento bibliográfico foi realizado com intuito de analisar resultados e características de conversores CA-CC baseados em estruturas PFP boost modificadas. Comparações foram realizadas levando em consideração as características de distorção harmônica, fator de potência, complexidade do circuito de controle, eficiência energética, esforços nos semicondutores de potência e emissão de interferência eletromagnética (IEM). O conversor proposto é então equacionado e os valores dos componentes acumuladores de energia determinados são escritos como função das especificações de projeto. Análises gráficas indicam o comportamento da distorção harmônica e do fator de potência da estrutura atuando em diferentes níveis de tensão. Simulações são realizadas como forma de comprovar a eficácia do sistema conversor no que se refere à correção do fator de potência e à distribuição dos esforços nos semicondutores de potência. Os principais resultados estão dispostos em tabelas comparativas, que indicam um fator de potência praticamente unitário. O sistema de regulação da tensão saída, testado via simulação computacional, apresenta resultados que demonstram boa dinâmica na resposta transitória e erro nulo a regime frente às variações de carga e afundamentos na... / This paper proposes an AC-DC converter, pulse width modulated (PWM) with high power factor and a variable duty cycle control. The power factor preregulator (PFP) converter proposed is composed of multiple bridgeless boost interleaved cells. The integration of these techniques allows a reduction in the energy losses and sharing the stress in power semiconductors. The literature review was performed in order to analyze the results and characteristics of AC-DC converters based on modified PFC boost structures. Comparisons were made taking into account the characteristics of harmonic distortion, power factor, complexity of control circuitry, energy efficiency, current stress in power semiconductors, and emission of electromagnetic interference (EMI). The proposed converter is mathematically equated and the values of the reactive components are written as a function of design specifications. Graphical analysis indicates the behavior of harmonic distortion and power factor of the structure at different voltage levels. Simulations are performed in order to demonstrate compliance of the converter system with respect to the power factor correction and distribution efforts in the power semiconductors. The main results are arranged in comparative tables which indicate power factor very closed to unity. The control system applied to the converter was evaluated through the computer simulations which showed good dynamics at transient response and null steady-state error faced to load variations and sags in the voltage supply. The prototype for the power stage implemented in the laboratory operated according... (Complete abstract click electronic access below)
14

Kalibrační postupy etalonu Datron 4920 / Calibration rutines of the standard Datron 4920

Schinneck, Jakub January 2016 (has links)
This master’s deals with the calibration routines of the alternating voltage measurement standard Datron 4920. The first part introduces the basic terminology of metrology, its history and organizations specializing in metrology. The thesis describes the alternating voltage at the highest metrological level through AC/DC difference. The theoretical part also describes the alternating voltage measurement standard Datron 4920 and its measurement functions together with the calibration routines. The main aim of thesis is to create the calibration procedures AVMS Datron 4920. Based on the created calibration procedures, a flowchart of application for calibration routines is designed. The practical part then continues with programming application for calibrating AVMS Datron 4920 based on the created flowchart. In conclusion, the application is tested at selected points of measurement and an analysis of measurement uncertainties is carried out.
15

Computer control of a pulse width modulated AC/DC converter under a variable frequency power supply

Singh, Gunjan January 1993 (has links)
No description available.
16

DYNAMIC MODELING, STABILITY ANALYSIS AND CONTROL OF AC/DC INTERCONNECTED MICROGRID USING DQ-TRANSFORMATION

Sarker, Partha Sarathi January 2018 (has links)
In recent years, there have been significant changes in power systems due to the integration of renewables, distributed generation, switched power loads, and energy storage systems, etc. Locally these AC/DC microgrids include both DC generation (such as solar PV) and AC generation (such as wind generation), various DC and AC loads, converters and inverters, and energy storage systems, such as storage batteries and supercapacitors. DC systems are often characterized as low inertia systems whereas AC generation and systems are usually high inertia and high time constant systems. As such, various components of the microgrid will have different temporal characteristics in case of disturbances, such as short circuit, load switchings, etc. which may lead to instability of the microgrid. This research develops the first principle model for coupling the AC and the DC subsystem of an integrated AC/DC microgrid utilizing the dq-framework. The developed model is highly nonlinear and captures the dynamic interaction between the AC and DC subsystems of the microgrid. Lyapunov stability is used to evaluate the stability of the complete system. Simulation results show that the AC and DC subsystems are tightly dynamically coupled so that any disturbance in one subsystem induces transients in the other subsystem. Induced transients due to pulse loads on the AC and DC subsystems clearly show that generator damper winding alone may not be enough to mitigate transients in the microgrid. Addition of prime mover and excitation system controllers for the generator improves the transients primarily on the AC subsystem. Thus, a battery storage with a charge/discharge controller was also added to the DC subsystem. Simulations of the AC/DC microgrid with all three controllers validate the smooth operation of the system for all types of disturbances. The proposed method can be extended in modeling microgrid with multiple generators and various types of loads. / Electrical and Computer Engineering
17

Commande avancée de convertisseurs de puissance : application aux réseaux électriques embarqués / Advanced control of power converters : application to the embedded electric networks

Ghita, Ion 01 October 2018 (has links)
Dans les dernières années, le respect de l’environnement est devenu une des grandes préoccupations des clients du secteur automobile. Les constructeurs cherchent à réduire les émissions carbones de ses produits et les véhicules hybrides ou purement électriques apparaissent comme une alternative viable aux véhicules thermiques. Un des éléments importants de la réussite de la commercialisation des véhicules électriques est la recharge de la batterie qui peut être effectuée par différents moyens, avec des chargeurs embarqués/débarqués, à domicile ou sur la voie-publique. Dans ce domaine un système de charge performant doit notamment être robuste vis-à-vis des contraintes extérieures( perturbations réseaux, impédances de ligne, charges de plusieurs véhicules en même temps), avoir un bon rendement entre la puissance puisée à la prise et celle délivrée à la batterie, maitriser les courants harmoniques rejetés sur le réseau électrique (respect des différentes contraintes réglementaires liées aux perturbations émises). Pour répondre à ces exigences les travaux de cette thèse proposent des commandes innovantes des convertisseurs de puissance contenus dans les chargeurs électriques. Dans un premier temps, la modélisation des convertisseurs de puissance est réalisée en moyenne à la période de commutation et en moyenne généralisée pour d´écrire le processus de génération des harmoniques des courants et tensions des convertisseurs. Des lois de commande non-linéaire fondées sur la théorie de stabilité au sens de Lyapunov sont proposées de fac¸on à induire un comportement en boucle fermée satisfaisant les exigences souhaitées pour les convertisseurs de puissance. La partie commande est complétée par une partie d’observation nécessaire pour l’estimation des signaux non-mesurés et pour l’extraction harmonique. Enfin dans la dernière partie de la thèse, les différentes stratégies de commande sont validées par rapport aux exigences via une co-simulation en reproduisant l’architecture de logiciel model in the loop utilisée dans l’industrie / In the last few years the question of respecting the environment became a central concern of car users. The electric cars respond to the public trend of reducing the toxic emissions of conventional cars. The success of electric cars depends on the charging of the batteries, charging done either at home or on the public domain.The charging system has to respond to the following performance criteria:-robustness to exterior constraints: network perturbations, line impedance, multiple simultaneous charging of vehicles.-a good efficiency for the power transfer between the received power and the power delivered to the battery.-respecting the power distributer constrains for network harmonic pollution.These three points impose the need for efficient control laws for the battery charger. In this context, the power converters (AC / DC - DC / DC) are key components in electrical chargers , an improved control law of these elements can provide a better level of performance for the charger.This work is a continuation of previous work that resulted in several theses with CIFRE funding, in collaboration with Renault in the context of the electric car (but not only):- From an industrial viewpoint, the doctoral student will draw on the expertise, experience and Renault's test facilities in the field of electric traction in the automotive transport.- From an academic point of view the work will benefit from the skills of the working group 'System control’ within the L2S laboratory, in the field of multi-physics modelling, design of control laws and optimization.Supervision will be provided by:- Emmanuel Godoy (Professor, HDR, advisor) and Dominique Beauvois (professor, co-director) of the academic point of view.- Pedro Kvieska (Engineer, Doctor, Ecole Centrale de Nantes) for industrial management within Renault.Objectives of the thesisThe first two years of thesis work will focus on methodological studies of dedicated control laws. During the third year the work will be focused on the implementation of the proposed architectures and control strategies by: implementing of the new control strategies as prototypes on test bench and on the transferability of the proposed control approaches.A big part of the last year will naturally be devoted to the writing of the doctoral thesis and the preparation of the defence.
18

A new bidirectional AC-DC converter using matrix converter and Z-source converter topologies

You, Keping , Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
This thesis proposes a new bidirectional three-phase AC-DC power converter using matrix converter and Z-source inverter topologies. Advantages of the AC-DC matrix converter are the inherently controllable power factor, the tight DC voltage regulation, the wide bandwidth with quick response to load variation, the single-stage buck-voltage AC-to-DC power conversion; advantages of the z-source inverter are the increased reliability by allowing the shoot-through between upper and lower power switches of one inverter leg, insensitivity to DC bus voltage due to the extra freedom of controlling DC-link voltage. The proposed Matrix-Z-source converter (MZC) marries up both advantages of AC-DC matrix converter and Z-source inverter. It can achieve voltage-boost DC-AC inversion capable of variable voltage variable frequency (VVVF) AC output; it can achieve voltage-buck AC-DC rectification capable of inherent control over AC current phase angle and DC output regulation with a (VVVF) AC source supply. Both foresaid performance in DC-AC inversion and AC-DC rectification can be implemented in a simple open-loop control manner. Three constraints of VSI, in the bidirectional AC-DC power conversion, are the peak AC voltages are always less than DC-link voltage, closed-loop control has to be employed when DC regulation and/or AC current phase angle control are required, and AC voltage is sensitive to the variation of the DC-link voltage in DC-AC inversion. The voltage-boost inversion and/or voltage-buck rectification of MZC overcomes the first constraint; thus MZC enables the AC machine voltage increased higher than DC-link voltage hence advantages of running AC machine at relatively high voltages are enabled. The direct DC voltage regulation and inherent AC-current-phase-angle control of MZC overcomes the second constraint in an open-loop manner; hence a simplified system design is obtained with sufficient room for the further improvement by closed-loop control schemes. The extra freedom in controlling DC-link voltage of MZC overcomes the third constraint hence a DC source voltage adaptable inverter is obtained. This thesis focuses on the study of the feasibility of the proposed MZC through theoretical analysis and experimental verification. At first, the proposed MZC is conceptually constructed by examining the quadrant operation of AC-DC matrix converter and Z-source inverter. After the examination of the operating principles of both AC-DC matrix converter and Z-source inverter, the configuration of MZC is then proposed. The MZC has two operating modes: DC-AC inversion and AC-DC rectification. Circuit analysis for both operating modes shows that the new topology does not impose critical conflict in circuit design or extra restriction in parameterization. On the contrary, one version of the proposed MZC can make full advantage of Z-source network components in both operating modes, i.e. a pair of Z-source inductor and capacitor can be used as low-pass filter in AC-DC rectification. The modulation strategy, average modeling of system, and features of critical variables for circuit design of the proposed MZC were examined for each operating mode. Simulations of the proposed MZC and its experimental verification have been presented. Analytical models of conduction and switching losses of the power-switch network in different operating mode have shown that the losses in the MZC compare favorably with conventional VSI for a range of power factor and modulation indices.
19

Contribution à l'étude des convertisseurs statiques AC-DC-AC tolérants aux défauts / Contribution to the study of fault tolerant AC-DC-AC converters

Shahbazi, Mahmoud 17 September 2012 (has links)
Les convertisseurs statiques triphasés AC/DC/AC à structure tension sont largement utilisés dans de nombreuses applications de puissance. La continuité de service de ces systèmes ainsi que leur sécurité, leur fiabilité et leurs performances sont aujourd'hui des préoccupations majeures de ce domaine lié à l'énergie. En effet, la défaillance du convertisseur peut conduire à la perte totale ou partielle du contrôle des courants de phase et peut donc provoquer de graves dysfonctionnements du système, voire son arrêt complet. Afin d'empêcher la propagation du défaut aux autres composants du système et assurer la continuité de service en toute circonstance lors d'une défaillance du convertisseur, des topologies de convertisseur "fault tolerant" associées à des méthodes efficaces et rapides de détection et de compensation de défaut doivent être mises en oeuvre. Dans ce mémoire, nous étudions la continuité de service de trois topologies de convertisseurs AC/DC/AC avec ou sans redondance, lors de la défaillance d'un de leurs interrupteurs. Deux applications sont ciblées : l'alimentation d'une charge RL triphasée et un système éolien de conversion de l'énergie basé sur une MADA. Un composant FPGA est utilisé pour la détection du défaut, afin de réduire autant que possible son temps de détection. Des variantes permettant d'optimiser la méthode de détection de défaut sont également proposées et évaluées. Les trois topologies de convertisseurs proposées, associées à leurs contrôleurs, ont été validées de la modélisation/ simulation à la validation sur banc de test expérimental, en passant par le prototypage "FPGA in the Loop" du FPGA, destiné plus spécifiquement à la détection du défaut / AC/DC/AC converters are widely being used in a variety of power applications. Continuity of service of these systems as well as their reliability and performances are now of the major concerns. Indeed, the failure of the converter can lead to the total or partial loss of the control of the phase currents and can cause serious system malfunction or shutdown. Thus, uncompensated faults can quickly endanger the system. Therefore, to prevent the spread of the fault to the other system components and to ensure continuity of service, fault tolerant converter topologies associated to quick and effective fault detection and compensation methods must be implemented. In this thesis, we present the continuity of service of three AC/DC/AC fault tolerant converters with or without redundancy, in the presence of a fault in one of their switches. Two types of applications are studied: the supply off a three-phase charge and a wind energy conversion system based on a DFIG. An FPGA based implementation is used for fault detection, in order to reduce the detection time as much as possible. Three optimizations in the fault detection method are also presented. During these researches, the three proposed converter topologies and their controllers are validated in simulations and also experimentally, while being validated in a "FPGA in the Loop" prototyping
20

Análise e projeto de um conversor ca-cc de comutação forçada / not available

Almeida, Paulo Roberto Lima 01 September 1995 (has links)
Este trabalho tem como principal objetivo apresentar uma investigação e uma metodologia de projeto, até o presente momento inédita, de uma topologia de um conversor ca-cc trifásico de comutação forçada. Através da análise desenvolvida neste trabalho, determina-se um modelo matemático do conversor ca-cc para os quatro modos que determinam o processo da comutação nesse circuito. Esse modelo resulta em sistemas de equações fundamentais na forma de equações diferenciais, que são resolvidos com a finalidade de determinar o comportamento do circuito do conversor durante o processo de comutação e de obter uma metodologia de projeto. Com o objetivo de validar a investigação e o método de projeto foi implementada simulação computacional, no programa Simmon, dos intervalos de comutação do conversor ca-cc de comutação forçada. Essa estrutura, que durante a sua operação emprega tanto a comutação forçada como a natural, quando comparada com os conversores de comutação natural apresenta várias vantagens, como um alto fator de potência e a eliminação dos harmônicos de baixa ordem na linha ca (utilização da comutação forçada com a técnica de modulação por largura de pulso PWM), como mostra vátios trabalhos publicados, que estão desctitos na parte de referências bibliográficas deste texto. / The main objective of this work is to present an investigation and a design method, which up to now is not available in the literature, of a three-phase force commutated ac-dc convetier. From the analysis developed in this work one obtains the mathematical model of the ac-dc converter for its four modes of commutation, which determine the commutation process in the converter circuit. The fundamental equations, which have been written in the form of differential equations, are solved to determine the behaviour of the converter circuit during commutation, and also to obtain a design method. To validate the analysis and the design procedure, computer simulation of the commutation intervals of the ac-dc converter was implemented using the program Simnon. The three-phase ac-dc converter, which uses both forced and line commutation, when compared with the conventional line commutated converter, presents several advantages as a high power factor and the elimination of lower harmonics of the ac line (utilization of the forced commutation and the pulse width modulation strategy), as it is shown in several published works, which can be found in the references of this work.

Page generated in 0.4016 seconds