• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 266
  • 72
  • 27
  • 17
  • 9
  • 8
  • 7
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 781
  • 781
  • 270
  • 265
  • 229
  • 109
  • 102
  • 101
  • 98
  • 97
  • 90
  • 84
  • 76
  • 76
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

High-Intensity Interval Training Improves Insulin Sensitivity Independent of Adipose Tissue Inflammation

Sikkema, Sarah R. 10 1900 (has links)
<p>Obesity is associated with a state of chronic, low-grade inflammation that contributes to the development of insulin resistance. Exercise is known to improve insulin resistance, and emerging evidence suggests that exercise also reduces adipose tissue inflammation. However, the relationship between exercise and inflammation has not been separated from the confounding effect of weight loss. The objectives of this study were to 1) determine whether high-intensity interval training (HIT) improves insulin sensitivity in obese mice independent of weight loss and 2) assess the effect of exercise on the relationship between adipose tissue inflammation and insulin sensitivity.</p> <p>C57BL/6 mice were assigned to one of three groups: a control, chow diet (Chow), 12 weeks of high-fat diet with no exercise (HFD Sed), or 6 weeks of high-fat diet feeding followed by an additional 6 weeks of HIT (HFD Ex). In HFD-induced obese mice, HIT had no effect on body mass, epididymal fat mass, adiposity, or adipocyte size. HIT also did not alter adipose tissue inflammation, macrophage infiltration, or adipose tissue macrophage polarization/inflammation. Nevertheless, when compared to HFD Sed mice, HIT resulted in lower fasting insulin levels and improved glucose tolerance and insulin sensitivity.</p> <p>In conclusion, these finding demonstrate that HIT improves whole-body insulin sensitivity and glucose homeostasis independent of changes in body mass or adipose tissue inflammation. The benefits of exercise in obese individuals are obvious; however, the mechanisms underlying the improvements in insulin sensitivity observed following chronic, HIT remain to be elucidated.</p> / Master of Science (MSc)
372

The time course of changes in brown adipose tissue fat fraction during cooling and warming in adult males

Oreskovich, Stephan Mark January 2018 (has links)
Background: Brown adipose tissue (BAT) preferentially oxidizes stored triglycerides (TAGs) to generate heat during acute exposure to cold. However, the time course of its activation is not well described as we are currently limited to BAT measurements before and after an acute stimulus. Magnetic resonance imaging (MRI) is a preferred modality to uncover such evidence, as it estimates TAG content via fat fraction (FF), and permits repeat scans in the same subject. As such, serial FF measurements in a defined BAT region of interest during a uniform whole-body temperature challenge is warranted. Objectives: The first objective of this study was to assess the pattern of change in supraclavicular (SCV) BAT and posterior neck subcutaneous adipose tissue (SAT; a region with an unestablished role in non-shivering thermogenesis) FF during a mild cold exposure in adult males. The second objective was to evaluate if indices of body composition were related to the pattern of cold-induced change in SCV BAT FF. The final objective was to assess the influence of warming immediately following cooling on these changes. Methods: Twelve males between the ages of 19 and 28 were recruited to this cross-sectional study. Users of tobacco, nicotine, and/or alcohol, those with contraindications for magnetic resonance imaging (MRI), and diseases, surgeries, and/or medications associated with thermogenesis were excluded. There were two study visits in total. During the initial visit, anthropometric measurements were carried out in triplicate (i.e. height and weight to determine body mass index (BMI), and body composition measurements (i.e. % body total fat and lean mass (kg)) were obtained using Dual Emission X-Ray Absorptiometry. Within 30 days of this initial visit, subjects attended a time course MRI session. At this visit, participants underwent standardized cold (3-hours at 18°C) and subsequent warm (30 minutes at 32°C) exposures using a water-perfused suit while lying in a 3 Tesla MRI scanner, and the temperature of the water entering and leaving the suit was recorded throughout. FF in the SCV region and posterior neck SAT was measured at defined intervals during both temperature challenges. Separate time course plots of the mean reduction in FF from baseline were constructed for the cooling and warming phases. For the first objective, the rate and magnitude of FF changes in SCV BAT and posterior neck SAT over defined time intervals were determined through calculations of slope and area under the curve (AUC), respectively. Identification of the earliest point of change from baseline, and the point at which changes were no longer different from those measured after 3 hours of cooling, were accomplished through paired comparisons using a random-slope linear mixed model with measures at 0 minutes and 180 minutes used as the reference values, respectively. A random-intercept multilevel regression model was used to define the cold-induced change in FF over time. For the second objective, a Spearman rank-order correlation assessed the association between indices of body composition (i.e. BMI and % total body fat) and indices of BAT activity (i.e. AUC and FF reduction) at time points of interest as identified by objective 1. Results: The mean±SD of BMI, LMI, and % total body fat were 24.7±2.8kg/m2, 17.6±1.6kg/m2 and 25.0±7.4%, respectively. Seven of the twelve subjects completed three hours of cold exposure (58.3%), and a further five endured at least one hour. A significant cold-induced reduction in SCV BAT FF was detected at 10 minutes following the onset of cold exposure (mean difference = -1.6%; p=0.005), and changes in FF beyond 30 minutes of cooling were similar to those measured after three hours (p<0.05). Meanwhile, the posterior neck SAT did not experience significant cold-induced changes in FF. A novel attempt at identifying a quadratic model to predict one’s BAT-specific response to a cold challenge was carried out, and the intercept, time, time2, and intraclass correlation coefficient (i.e. parameters which described the relationship between FF and time) were highly significant (p<0.001). Although every participant had a measurable decline in FF, those with a higher BMI and % body fat had a smaller magnitude of change throughout the time course. In particular, a strong negative correlation between BMI and AUC FF decline existed as soon as 10 minutes following the onset of cold (rho=-0.786), indicating that those with a lower BMI had a larger magnitude of change in SCV BAT FF at this point. Finally, warming did not visually influence the trajectory of SCV BAT FF. Limitations: Only seven of the twelve participants completed the full 180 minutes of cold exposure, which further limited the already low statistical power of this study. Moreover, complementary measures of BAT activity, such as energy expenditure, and objective measurements of shivering, such as electromyography, could not be evaluated. Conclusions: These findings suggest that significant cold-induced changes in BAT FF occur much sooner than three hours. Thus, a shorter duration of cold exposure may be considered in future studies using MRI to detect BAT activity, as this could increase the feasibility of gathering larger and younger sample populations. / Thesis / Master of Science (MSc)
373

Matrigel alters the expression of genes related to adipogenesis and the production of extracellular matrix in 3T3-L1 cells

Josan, Chitmandeep January 2018 (has links)
Studying molecular mechanisms underlying adipocyte differentiation is imperative to understanding adipocyte function and its role in obesity. However, the majority of research exploring adipogenesis is conducted with cell lines cultured directly on tissue culture plastic. Culturing cells on plastic may result in altered proliferation and differentiation, and subsequent change in pharmacological response. The extracellular matrix (ECM) plays a critical role in adipocyte development and survival. It is suggested that cells in vitro express high levels of ECM proteins to compensate for lack of an ECM. Differentiating preadipocytes on a substrate representative of the mature adipocyte extracellular environment may provide a more physiological response to drugs and environmental chemicals. The purpose of this study was to investigate the impact of Matrigel on 3T3-L1 cell growth, differentiation, lipid accumulation and responsiveness to Rosiglitazone. Matrigel decreased 3T3-L1 cell proliferation, enhanced lipid accumulation, and increased expression of adipogenic and lipogenic markers, including PPARγ, C/EBPα, SREBP1c, FAS, LPL, FABP4 and PLIN1. This was accompanied by a decrease in gene expression of ECM proteins, including fibronectin, collagen 1, collagen 3, collagen 4, laminin and collagen 6 in 3T3-L1 cells on Matrigel. Finally, Matrigel enhanced the response of 3T3-L1 cells to Rosiglitazone, which is a known PPARγ agonist and significantly increases lipid accumulation in 3T3-L1 cells. Our results suggest that enhanced lipid accumulation in 3T3-L1 cells on Matrigel is associated with decreased expression of ECM genes. Future studies require investigation of the cell-to-ECM interaction to confirm these findings. This study proposes that the nature of the ECM for cultured adipocytes alters temporal lipid accumulation patterns and response to various drugs as compared to 3T3-L1 cells grown on tissue culture plastic. / Thesis / Master of Science (MSc)
374

INVESTIGATING SOURCES OF PERIPHERAL SEROTONIN SYNTHESIS: IMPLICATIONS FOR REGULATING METABOLISM

Yabut, Julian January 2020 (has links)
PhD Dissertation / Obesity is a major risk factor for type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), and is attributed to excess energy intake in comparison to energy expenditure. Therapeutics that reduce energy intake in obesity have limited efficacy, with weight loss typically reaching less than 10% of initial body mass, leading to efforts to uncover new therapies that may increase energy expenditure. Unlike lipid-storing white adipose tissue, brown and beige adipose tissues undergo futile cycling, oxidizing lipids and carbohydrates thereby increasing energy expenditure. With obesity, the metabolic activity of brown and beige adipose tissue is reduced, suggesting that restoring adipose tissue thermogenesis may represent a new means to enhance energy expenditure. Previous studies in mice have shown that peripheral serotonin synthesis by the enzyme tryptophan hydroxylase 1 (Tph1) inhibits adipose tissue thermogenesis and contributes to the development of obesity, insulin resistance and NAFLD. However, the primary Tph1 expressing tissue(s) inhibiting adipose tissue futile cycling is not known. In this thesis, we genetically removed Tph1 in mast cells of mice and discovered that this elevated beige adipose tissue activity protecting mice from developing high-fat diet induced obesity, insulin resistance and NAFLD. In contrast to these findings, genetic deletion of Tph1 in adipocytes did not result in protection from obesity, suggesting that mast cells are the primary source of serotonin that inhibits white adipose tissue thermogenesis. Lastly, to determine the importance of adipose tissue thermogenesis in mediating the beneficial metabolic effects of reduced Tph1, mice were housed at thermoneutrality, blocking the requirement for adipose tissue thermogenesis. Under these conditions, mice lacking Tph1 had comparable brown and beige adipose tissue metabolic activity, energy expenditure and adiposity, however, surprisingly, were still protected from insulin resistance and NAFLD. The studies in this dissertation have discovered that mast cell Tph1 is critical for inhibiting adipose tissue thermogenesis and that serotonin plays an important role in promoting NAFLD, independently of its inhibitory effects on adipose tissue thermogenesis. Collectively, these findings further define the roles of serotonin in regulating whole-body energy metabolism, providing critical clues and mechanistic insights for potential therapies to mitigate metabolic diseases. / Dissertation / Doctor of Philosophy (Medical Science) / Obesity, type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) can develop when caloric intake exceeds expenditure. In contrast to lipid-storing white fat, brown and beige fat burn calories. Serotonin is a hormone that reduces the burning of calories in fat, therefore finding ways to inhibit its effects on fat tissue without altering serotonin in the brain may lead to new therapies for obesity and other related diseases. In this thesis, we examined potential sources of serotonin that might inhibit the burning of calories in adipose tissue of mice. By reducing the synthesis of serotonin in a white blood cell called mast cells, but not fat cells, mice were protected from obesity, pre-diabetes and NAFLD due to increased activity of beige fat. Moreover, when we kept mice in a warm environment, thus reducing the need for mice to burn calories in brown and beige fat, this eliminated the effects of serotonin to promote obesity, but not pre-diabetes and NAFLD. These studies have identified how serotonin generated from mast cells inhibits the burning of calories in adipose tissue, a finding that may lead to new therapies for obesity, T2D and NAFLD.
375

Investigating the Plasma Metabolome in Relation to Brown Adipose Tissue and Non-Alcoholic Fatty Liver Disease in Adults and Children. / Linking Brown Adipose Tissue and NAFLD By Metabolomics in Adults and Children

Varah, Nina January 2020 (has links)
Nina Varah MSc Thesis / BACKGROUND: Brown adipose tissue (BAT) has emerged as an attractive target to address the dramatic rise in obesity and non-alcoholic fatty liver disease (NAFLD) in adults and children due to its ability to clear lipids through thermogenesis when activated with cold stimulation. Cross-sectional studies have identified an inverse relationship between BAT and NAFLD in adults, although no linking mechanism or relevance in children is known. Metabolomics provides a non-invasive platform to investigate BAT physiology and its relationship with hepatic fat in an effort to identify potential targets for further investigation. PROJECT OBJECTIVES: 1) To explore the associations between the plasma metabolome and BAT in adults and children. 2) To explore the associations between the plasma metabolome and hepatic fat in adults and children. 3) To identify metabolites associated with both BAT and hepatic fat as potential linking mechanisms for further study. METHODOLOGY: We recruited 63 male and female adults aged 18 to 57 years and 25 healthy male children aged 8 to 10 years into this cross-sectional study. Study participants underwent blood work, body composition measurement (dual energy X-ray absorptiometry; DXA) and magnetic resonance imaging (MRI) - proton density fat fraction (PDFF) measurements of whole liver hepatic fat, pre- and post-cold supraclavicular fat. BAT activity was calculated as the percent change between post and pre-cold BAT PDFF with the cold stimulus consisting of a water-perfused suit maintained at 18°C for 3-hours (adult) or 1-hour (pediatric). Targeted liquid-chromatography/mass spectrometry metabolomics of 102 metabolites was conducted on fasted plasma and multivariate linear regression with multiple testing correction was used to examine metabolite predictors of BAT measures and hepatic fat. RESULTS: In the adult cohort (n=63, median age 25.9 years, median body mass index (BMI) 25.4 kg/m2), five metabolites were associated with baseline BAT lipid content, where an elevated lipid content may indicate a whiter adipose tissue-like phenotype. Aconitate and creatine commonly predict increased baseline BAT lipid content (β=0.420, P=0.001 and β=0.408, P=0.001, respectively), and reduced BAT activity (β=-0.462, P=0.002 and (β=-0.402, P=0.002, respectively). Alanine and two acyl-carnitines also predicted reduced BAT activity. Glutamic acid was similarly related to higher baseline BAT (β=0.480, P<0.001) and hepatic lipid content independent of age and sex (β=0.392, P=0.002). Three other metabolites were directly related to hepatic fat, and serine inversely. In children (n=25, median age 9.89 years, mean BMI Z-score 1.25), cysteine and cystine were trending towards a significant relationship with higher baseline BAT lipid content, and were both related to elevated hepatic fat independent of adiposity (cysteine: quadratic β=-0.714, p<0.001 and cystine: quadratic β=0.592, p<0.001). Two hydroxy-proline isomers and L-carnitine were associated with reduced BAT activity. CONCLUSION: In adults, several metabolites were associated with reduced BAT activity and with a higher baseline BAT lipid content in the non-stimulated state – aconitate and creatine were related to both. Acylcarnitines or their metabolites related to BAT in both children and adults, which may suggest areas for subsequent investigation of BAT metabolism. Glutamic acid in adults and cysteine and cystine in children were weakly related to elevated baseline BAT and hepatic fat content. Further, amino acids such as glutamic acid and cysteine may be markers of increased ectopic fat accumulation – and are also associated with a whiter ambient BAT phenotype. Cumulatively, these findings highlight targets for further investigation into BAT physiology and the link to the liver. / Thesis / Master of Science (MSc)
376

Investigation of myoglobin expression and its physiological function in brown adipose tissue

Christen, Lisa 07 March 2024 (has links)
Obesity is a chronic disease caused by an imbalance of energy intake and expenditure resulting in excessive accumulation of adipose tissue (AT) either in major adipose depots like subcutaneous (SAT) or visceral (VAT), or ectopic lipid deposition in other organs and tissues such as liver or muscle. In 2019 obesity was ranked globally under the top five death causes and increases the risk for suffering from non-communicable diseases such as stroke, diabetes and various types of cancer. Current therapeutic strategies implement dietary interventions and increased physical activity, application of incretin-based drugs such as dual or triple agonists, or bariatric surgery. The recruitment and activation of brown adipose tissue (BAT) represents an intriguing therapeutic approach to combat obesity by increasing energy expenditure via thermogenesis. BAT is a highly metabolically active organ and its activity is induced by cold. To maintain body temperature, BAT is specialized in the dissipation of energy to produce heat by a high demand of oxygen and substrates such as lipids and glucose. Myoglobin (MB) expression was detected in BAT of cold-exposed rodents and is increased during brown adipocyte differentiation suggesting an unrecognized physiological role in BAT contributing to thermogenesis. Since BAT and muscle are both highly metabolic active organs and are derived from the same myogenic factor 5 positive progenitor, it is likely, that BAT MB might exert similar functions as in muscle tissue. In addition to facilitating oxygen supply, further contributions of MB have been assigned to scavenging ROS and regulating cellular NO levels. Furthermore, a role of MB as a lipid shuttle was proposed, as MB seems to enable energy production via beta-oxidation and prevent myocardial lipid accumulation. This project addressed the hypothesis that MB expression is upregulated in active (brown) AT to support thermogenesis by serving as lipid shuttle from the cytosol into the mitochondria, by contributing and sustaining oxygen supply and/ or by acting as ROS scavenger during thermogenesis. To investigate consequences of MB expression in BAT on mitochondrial function and thermogenesis in vitro and in vivo, MB overexpressing, knockdown or knockout adipocytes and global myoglobin-knockout (Mb-KO) mice were used. Initially, temperature- and differentiation-dependent changes in MB gene and protein expression were investigated in vivo and in vitro. MB expression was upregulated in BAT of cold-exposed C57BL/6N mice and during adipogenesis of brown adipocytes as confirmed in previous findings. Furthermore, BAT Mb gene expression correlated positively with Ucp1 suggesting MB in vivo being regulated by -adrenergic signaling. Surprisingly, in vitro Mb expression was inversely correlated to Ucp1 expression in immortalized and primary brown adipocytes after -adrenergic stimulation with norepinephrine or CL316,243. Since MB expression is increased during adipogenesis, the regulation by PPARG was investigated in immortalized brown adipocytes. Neither the stimulation by PPARG agonists such rosiglitazone or fatty acids nor cell-autonomous effects induced by hypothermia changed Mb gene expression concluding that other pathways regulate MB expression. Evaluating various MB expression levels (high, low, none) on mitochondrial respiration and responsiveness to adrenergic stimulation, Mb knockdown, knockout and overexpression experiments in immortalized and primary brown adipocytes were performed. Herein, a MB expression level dependent increase in maximal mitochondrial respiratory capacity and acute response to adrenergic stimulation, signaling and lipolysis was observed. Also in white adipocytes, metabolic activity was improved by MB overexpression. Since -adrenergic stimulation is accompanied with enhanced ROS production and MB acts as ROS scavenger in cardio myocytes, effects of MB expression on ROS and superoxide levels were determined. However, no impacts were detected, although cold-induced genes were found related to ROS in BAT of Mb-KO mice in vivo, thus a function as ROS scavenger in BAT cannot be excluded. MB binds fatty acids and acylcarnitines, therefore proposed lipid binding residues of MB were mutated. At first, the ability of MB’s lipid binding property was evaluated by dot blot lipid overlay assays. As a result, palmitic and oleic acid were bound by oxygen-carrying MB. The mutant instead showed a reduced binding capacity. In functional assays, the non-lipid binding property abolished the beneficial effects in substrate flux, mitochondrial respiration and thermogenesis of MB in immortalized brown adipocytes. At the end, this data clearly demonstrated that MB’s lipid binding is essential to augment substrate flux and permit increased mitochondrial respiration and thermogenesis. To investigate consequences of MB-deficiency on thermogenesis in vivo, whole-body Mb-KO mice models were exposed to thermoneutrality (30 °C), room temperature (23 °C, mild cold stress) and cold (8 °C) for seven days. Lack of MB resulted in impaired thermoregulation at temperatures below thermoneutrality and diminished the response to pharmacological BAT activation after intraperitoneal CL316,243 application. To address the translational potential, MB is differentially expressed in subcutaneous (SC) and visceral (VIS) depots of human adipose tissue (AT). In lean patients MB was significantly lower expressed in SC AT compared to VIS AT, whereas in obese patients the opposite was overserved. Further analyses revealed that MB expression was more pronounced in AT samples with higher thermogenic potential. As a conclusion, the present study demonstrates for the first time a functional relevance of MB’s lipid binding property and suggests MB as a previously unrecognized player in BAT biology that increases mitochondrial respiratory capacity, a crucial aspect for rapid adaptation to metabolic changes. The exact mechanisms how MB contributes to lipid transport, remain to be elucidated.
377

FoxO1 in the regulation of adipocyte autophagy and biology

Liu, Longhua 08 December 2016 (has links)
Obesity is a rapidly growing epidemic in the USA and worldwide. While the molecular and cellular mechanism of obesity is incompletely understood, studies have shown that excess adiposity may arise from increased adipogenesis (hyperplasia) and adipocyte size (hypertrophy) . Emerging evidence underscores autophagy as an important mediator of adipogenesis and adiposity. We are interested in the upstream regulator of adipocyte autophagy and how it impacts adipocyte biology. Given that metabolic stress activates transcription factor FoxO1 in obesity, my dissertation project is designed to depict the role of FoxO1 in adipocyte autophagy and biology. We found that FoxO1 upregulation was concomitant with elevation of autophagy activity during adipogenesis. Inhibition of FoxO1 suppressed autophagy flux and almost completely prevented adipocyte differentiation. For the first time, we found that the kinetics of FoxO1 activation followed a series of sigmoid curves that showed multiple activation-inactivation transitions during adipogenesis. Our study provides critical evidence casting light on the controversy in the literature that either persistent inhibition or activation of FoxO1 suppresses adipogenesis. In addition, we identified two central pathways that FoxO1-mediated autophagy regulated adipocyte biology: (1) to control lipid droplet growth via fat specific protein 27 (FSP27) in adipocytes; and (2) to differentially regulate mitochondrial uncoupling proteins (UCP) that have been implicated in browning of white adipose tissue and redox homeostasis. Mechanistically, FoxO1 appears to induce autophagy through the transcription factor EB (Tfeb), which was previously shown to regulate both autophagosome and lysosome. Chromatin immunoprecipitation assay demonstrated that FoxO1 directly bound to the promoter of Tfeb, and inhibition of FoxO1 attenuated the binding, which resulted in reduced Tfeb expression. To investigate the role of FoxO1 in vivo, we have developed mouse models to modulate FoxO1 in adipose tissue using an inducible Cre-loxP system. Tamoxifen is widely used to activate the inducible Cre recombinase that spatiotemporally control target gene expression in animal models, but it was unclear whether tamoxifen itself may affect adiposity and confounds phenotyping. Part of my dissertation work was to address this important question. We found that tamoxifen led to reduced fat mass independent of Cre, which lasted for 4-5 weeks. Mechanistically, Tamoxifen induced reactive oxygen species (ROS) and augmented apoptosis. Our data reveals a critical period of recovery following tamoxifen treatment in the study of inducible knockout mice. Together, my dissertation work demonstrates FoxO1 as a critical regulator of adipocyte autophagy via Tfeb during adipogenesis. FoxO1-mediated autophagy controls FSP27, lipid droplet growth, and mitochondrial uncoupling proteins. Further study of FoxO1-autophagy axis in obese subjects is of physiological significance, and the investigation is under way. / Ph. D.
378

Estrogen signaling interacts with Sirt1 in adipocyte autophagy

Tao, Zhipeng 18 June 2019 (has links)
Obesity is a rapidly growing epidemic. It is associated with preventable chronic disease and vast healthcare cost in the United States (about 200 billion per year). Therefore, dissecting pathogenic mechanisms of obesity would provide effective strategies to prevent its development and reduce related cost. Obesity is characterized by excessive expansion of white adipose tissue (WAT). Autophagy, a cellular self-digestive process, is associated with WAT expansion and may be a promising target for combating obesity. Both hormone signaling (e.g., ERα) and energy sensing factors (e.g., Sirt1) control metabolism and prevent adiposity, and in which they have been shown to play collaborate roles. However, how autophagy is involved in ERα and Sirt1's inhibitory roles on adiposity is unknown. These questions have been addressed in my dissertation studies. To address this fundamental questions, I have established a method to monitor autophagy flux during adipocyte differentiation, which better reflected the dynamic process of autophagy. Compared with preadipocytes, autophagy flux activity was increased in mature adipocytes after differentiation. And then, my thesis project has addressed three main questions. Firstly, the gender difference in visceral fat distribution (Males have higher deposit of visceral fat than females) is controlled by an estradiol (E2)-autophagy axis. In C57BL/6J and wild type control mice, a higher visceral fat mass was detected in the males than in the females, which was associated with lower expression of estrogen receptor  (ER) and more active autophagy in males vs. females. ER knockout normalized this difference. Mechanistically, E2-ER- mTOR-ULK1-autophagy signaling contributed to the gender difference in visceral fat distribution. Secondly, in vitro and in vivo studies demonstrated that Sirt1 suppressed autophagy and reduced adipogenesis and adiposity via inducing mTOR-ULK1 signaling. Specific activation and overexpression of Sirt1 induced mTOR-ULK1 signaling to suppress autophagy and adipogenesis. And knockdown of Sirt1 exhibited opposite effects. The first and second studies revealed that ER and Sirt1 acted on mTOR-ULK1 signaling pathway, underlying the importance of their interaction in inhibiting autophagy and adipogenesis. As such, the third study was conducted and it unraveled that ER acted as upstream of Sirt1, possibly through its direct binding to Sirt1 promoter. Specifically, E2 signaling suppressed autophagy and adipogenesis. But when Sirt1 was knockdown, the effects of E2 on autophagy and adipogenesis were abolished. Taken together, my dissertation project underscores the importance for future research to consider gender difference and how E2-ER-autophagy axis contributes to this difference in other metabolic diseases. Also, the unraveled interaction between ERα and Sirt1 might lead to new therapeutic approach to adiposity and metabolic dysfunction in post-menopausal women or individuals with abnormal estrogen secretion. For example, dietary intervention or exercise challenge to activate Sirt1 may partially compensate estrogen deficiency. / Doctor of Philosophy / Obesity is a rapidly growing epidemic, which is associated with chronic disease and vast healthcare cost in the United States. Understanding the pathogenic mechanism of obesity is of critical importance. Recent studies have implicated autophagy, a cellular self-digestive process, in WAT development and expansion. It was also shown that hormone (e.g., via estrogen receptor ERα) and energy (e.g., via Sirt1) signaling control metabolism and adiposity. However, it is unclear whether and how autophagy interacts with ERα and Sirt1 in the regulation of adiposity. My dissertation project unraveled the mechanism of how hormone signaling (e.g., ERα) and energy sensing factors (e.g., Sirt1) interacted with autophagy to control adipogenesis and adiposity. My thesis project has addressed three main questions. Firstly, the gender difference in visceral fat distribution (Males have higher deposit of visceral fat than females) is controlled by an estradiol (E2)-autophagy axis, ER knockout normalized this difference. Mechanistically, E2- ER- mTOR-ULK1-autophagy signaling contributed to the gender difference in visceral fat distribution. Secondly, in vitro and in vivo studies demonstrated that Sirt1 induced mTOR-ULK1 signaling, suppressed autophagy and reduced adipogenesis and adiposity (ER similar effects). As such, the third study was conducted and it unraveled that ER acted as upstream of Sirt1, possibly through its direct binding to Sirt1 promoter. Taken together, my dissertation study has explored how hormone signaling (ER) and energy signaling (Sirt1) interact with autophagy to control adipogenesis and adiposity individually and collaboratively, which may provide new therapeutical approach to control obesity.
379

Adipose tissue-derived mesenchymal stem cells for breast tissue regeneration

Banani, M.A., Rahmatullah, M., Farhan, N., Hancox, Zoe, Yousaf, Safiyya, Arabpour, Z., Salehi Moghaddam, Z., Mozafari, M., Sefat, Farshid 02 March 2021 (has links)
Yes / With an escalating incidence of breast cancer cases all over the world and the deleterious psychological impact that mastectomy has on patients along with several limitations of the currently applied modalities, it's plausible to seek unconventional approaches to encounter such a burgeoning issue. Breast tissue engineering may allow that chance via providing more personalized solutions which are able to regenerate, mimicking natural tissues also facing the witnessed limitations. This review is dedicated to explore the utilization of adipose tissue-derived mesenchymal stem cells for breast tissue regeneration among postmastectomy cases focusing on biomaterials and cellular aspects in terms of harvesting, isolation, differentiation and new tissue formation as well as scaffolds types, properties, material–host interaction and an in vitro breast tissue modeling.
380

Is subcutaneous adipose tissue expansion in people living with lipedema healthier and reflected by circulating parameters?

Nono Nankam, Pamela A., Cornely, Manuel, Klöting, Nora, Blüher, Matthias 07 August 2024 (has links)
Lipedema may be considered a model for healthy expandability of subcutaneous adipose tissue (SAT). This condition is characterized by the disproportional and symmetrical SAT accumulation in the lower-body parts and extremities, avoiding the abdominal area. There are no circulating biomarkers facilitating the diagnosis of lipedema. We tested the hypothesis that women living with lipedema present a distinct pattern of circulating parameters compared to age- and BMI-matched women. In 26 women (Age 48.3 ± 13.9 years, BMI 32.6 ± 5.8 kg/m2; lipedema group: n=13; control group: n=13), we assessed circulating parameters of glucose and lipid metabolism, inflammation, oxidative stress, sex hormones and a proteomics panel. We find that women with lipedema have better glucose metabolism regulation represented by lower HbA1c (5.55 ± 0.62%) compared to controls (6.73 ± 0.85%; p<0.001); and higher adiponectin levels (lipedema: 4.69 ± 1.99 mmol/l; control: 3.28 ± 1.00 mmol/l; p=0.038). Despite normal glycemic parameters, women with lipedema have significantly higher levels of total cholesterol (5.84 ± 0.70 mmol/L vs 4.55 ± 0.77 mmol/L in control; p<0.001), LDL-C (3.38 ± 0.68 mmol/L vs 2.38 ± 0.66 mmol/L in control; p=0.002), as well as higher circulating inflammation (top 6 based on p-values: TNFSF14, CASP8, ENRAGE, EIF4EBP1 , ADA, MCP-1) and oxidative stress markers (malondialdehyde, superoxide dismutase and catalase). Our findings suggest that the expected association between activation of inflammatory and oxidative stress pathways and impaired glucose metabolism are counterbalanced by protective factors in lipedema.

Page generated in 0.0189 seconds