• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 13
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 135
  • 135
  • 40
  • 22
  • 21
  • 17
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A novel purification method for binder of SPerm proteins and characterization of the protein interaction network of BSPH1

Sabouhi Zarafshan, Samin 08 1900 (has links)
Les protéines Binder of Sperm (BSP) appartiennent à une superfamille de protéines exprimées dans le système reproducteur masculin, plus particulièrement dans les vésicules séminales chez les ongulés, et dans l’épididyme chez l’humain et la souris. Jusqu'à présent, des rôles variés chez différentes espèces ont été démontrés pour les protéines BSP, tels que dans la motilité et la capacitation chez le bovin. Cependant, leur rôle demeure élusif chez d’autres mammifères comme la souris et l’humain. Des études in vivo récentes ont démontré que la délétion des gènes Bsph1 et Bsph2 chez la souris n’a aucune conséquence sur la fertilité, et n’induit aucune anomalie au niveau de l'appareil reproducteur masculin. Afin d'élucider le rôle spécifique de la protéine BSP chez l'humain (BSPH1), nous avons d’abord développé une méthode de purification efficace permettant d’obtenir la protéine BSPH1 fonctionnelle car ces protéines ne sont présentes qu'en quantité infime dans l’épididyme humain. Suite, a la purification de BSPH1, j’ai réalisé des expériences in vitro et cherché à identifier son réseau d'interaction protéique. Il a été démontré que les protéines BSP interagissent avec des groupes pseudo-choline tels que le diéthylaminométhyle par affinité plutôt que par des interactions ioniques. Le diéthylaminoéthyle est chargé positivement et par conséquence, est un échangeur d'anions faible, mais les BSP interagissent avec affinité à la résine. Cette étude présente également une nouvelle méthode de purification rapide et peu coûteuse, qui fournit des protéines BSP recombinantes de grande pureté qui peuvent être utilisées pour étudier leurs rôles dans la fécondation chez les mammifères. Nous avons montré que la pré-incubation des ovocytes avec la protéine BSPH1 recombinante peut diminuer le taux de fécondation de manière dose-dépendante. Les spermatozoïdes ont également été pré-incubés avec un anticorps anti-BSPH1 et ont montré une diminution du taux de fécondation. Pour identifier le réseau d’interaction protéique de BSPH1, j'ai utilisé la méthode « Proximity-dependent biotin identification » (BioID) couplée à la spectrométrie de masse. Les résultats de la spectrométrie de masse ont démontré une interaction entre BSPH1 et toutes les sous-unités du complexe CCT / TRIC (Chaperonin containing tailless complex polypeptide 1 (CCT) ou tailless complex polypeptide 1 ring complex (TRiC)). Ce complexe interagit avec un autre complexe appelé BBSome (Bardet–Bied syndrome complex), qui joue un rôle important dans le transport de protéines à travers les cils primaires. BSPH1 a également interagi avec un grand nombre de protéines de la famille CEP (centrosome-associated proteins), importantes dans la formation des cils primaires par les microtubules et de la maturation du centrosome, qui soutiennent le rôle de BSPH1 dans les cils primaires. Dans l’ensemble, cette étude démontre que BSPH1 pourrait avoir un nouveau rôle en tant que chaperonne, à travers les cils primaires dans les cellules qui l’expriment dans l’appareil reproducteur masculin. / Binder of SPerm (BSP) proteins belong to a superfamily of proteins expressed in the male reproductive tract, particularly in seminal vesicles of ungulates (e.g., bovine, ram) and in the epididymis of humans and mice. So far, BSP proteins have been shown to play different roles in different species such as in motility and capacitation in bovine; however, their role remains unclear in other mammals. For instance, depletion of Bsph1/Bsph2 in mice had no effect on fertility. In order to elucidate the specific role of BSP protein in humans (BSPH1), I sought to investigate a purification method to produce functional human BSP protein, as these proteins are only present in minute amounts in the human epididymis. Following purification of BSPH1, I carried out in vitro experiments and sought to identify its protein interaction network. BSP proteins have been shown to interact with pseudo-choline groups such as diethylaminomethyl through affinity rather than ionic interactions. Diethylaminoethyl is positively charged and therefore is a weak anion exchanger, but BSPs interact through affinity to this resin. This study presents a new, rapid and cost-effective purification method that provides recombinant BSP proteins of a high purity level, which can be used to study their roles in mammalian fertilization. We showed that pre-incubation of oocytes with recombinant BSPH1 can decrease fertilization rate in a dose-dependant manner. Sperm were also preincubated with anti-BSPH1 antibody and showed a decrease in fertilization rate. Secondly, I used BioID (proximity-dependent biotin identification), coupled with mass spectrometry to identify the protein-protein interaction network of BSPH1 by proximity labeling. Mass spectrometry results showed an interaction between BSPH1 and all subunits of the CCT/TRIC complex (Chaperonin containing tailless complex polypeptide 1 (CCT) or tailless complex polypeptide 1 ring complex (TRiC). This complex interacts with another complex called BBSome (Bardet–Biedl syndrome complex), which plays a role in protein trafficking through primary cilium. I also identified BBS proteins, as well as other proteins, that interact with the BBSome complex and regulate protein trafficking in the cilia. BSPH1 also interacted with a large number of CEP (centrosome-associated proteins) family proteins, important in the formation of primary cilium through microtubules and centrosome maturation, which further support the potential implication of BSPH1 with the primary cilia. Overall, this study demonstrates that BSPH1 may have a new role as a chaperone involved in protein trafficking through the primary cilia in cells that express it in the male reproductive system
122

Development of a Novel Intein-Mediated Affinity Capture Platform for Production of Recombinant Proteins and Biopharmaceuticals

Taris, Joseph Edward January 2021 (has links)
No description available.
123

Analysis of Tha4 Function and Organization in Chloroplast Twin Arginine Transport

New, Christopher Paul 15 April 2020 (has links)
No description available.
124

Zur Struktur und Funktion regulatorischer Elemente des cbb-Regulons in Ralstonia eutropha / Structure and function of regulatory elements of the cbb regulon in Ralstonia eutropha

Jeffke, Thomas 31 January 2001 (has links)
No description available.
125

Structural and functional characterisation of the collagen binding domain of fibronectin

Millard, Christopher John January 2007 (has links)
Fibronectin is an extracellular multidomain glycoprotein that directs and regulates a variety of cell processes such as proliferation, development, haemostasis, embryogenesis, and wound healing. As a major component of blood, fibronectin exists as a soluble disulphide linked dimer, but it can also be incorporated into an insoluble cross-linked fibrillar network to form a major component of the extracellular matrix. Fibronectin is composed of an extended chain of module repeats termed Fn1, Fn2, and Fn3 that bind to a wide range of transmembrane receptors and extracellular matrix components, including collagen. The gelatin binding domain of fibronectin was first isolated as a 45kDa proteolytic fragment and has since been found to be composed of six modules: 6Fn1-1Fn2-2Fn2-7Fn1-8Fn1-9Fn1 (in this notation nFX represents the nth type X module in the native protein). This domain has been reported to bind to both collagen and denatured collagen (gelatin), but with 10-100 times higher affinity to the latter; it can be purified to homogeneity on a gelatin affinity column. In the work presented here, fragments of the gelatin binding domain are expressed in P. pastoris, purified to homogeneity, and investigated at the molecular level. Through a dissection approach, surface plasmon resonance (SPR) is used to characterise the recombinantly produced protein, to accumulate more information about the function of the full domain. NMR is used to assess the folding of the protein fragments at atomic resolution. In particular, the secondary structure of 8Fn1-9Fn1 is mapped using inter-strand NOEs, which suggests that the construct takes the fold of a pair of typical Fn1 modules. Gelatin affinity chromatography is used to confirm that both Fn1 and Fn2 modules contribute to gelatin binding, possibly in two clusters (1Fn2-2Fn2 and 8Fn1-9Fn1). The 7Fn1 module may perform a structural role in linking together these two interaction sites, in the same way as suggested for 6Fn1, which is thought to act in a structural manner to enhance the binding of 1Fn2-2Fn2 to gelatin. Three carbohydrate moieties are found on this domain, one on 2Fn2 and two on 8Fn1. Here, by means of expressing different protein length fragments, and by site directed mutagenesis, the role of each sugar chain is investigated independently. The sugar chain on 2Fn2 does not appear to promote binding to collagen, nor does the first sugar chain on 8Fn1 (N-linked to N497), implying another role for these sugars such as protection from proteolysis. However, the presence of at least a single GlcNAc sugar residue on the second sugar chain site on 8Fn1 (N- linked to N511) is essential for full affinity binding to collagen. Direct binding of the 8Fn1-9Fn1 module pair to collagen is assessed with a short collagen peptide and the binding is monitored by NMR. The peptide appears to bind, predominantly to the final strand of 8Fn1, the first β- strand of 9Fn1, and the linker between the two modules, with μM affinity. A model for bound peptide is proposed. The highly conserved amino acid motif Ile-Gly-Asp (IGD) is found on four of the nine N-terminal Fn1 modules of fibronectin. Tetrapeptides containing the IGD were demonstrated to promote the migration of fibroblast cells into a native collagen matrix. Two of these “bioactive” IGD motifs are found within the gelatin binding domain, one on 7Fn1 and one on 9Fn1. In this study, the motif in the 8Fn1-9Fn1 module pair is shown to be located in a tightly constrained loop within 9Fn1. By site directed mutagenesis, the IGD motifs of 7Fn1 and 9Fn1 are subjected to single amino acid substitutions, and their ability to stimulate cell migration assessed in our assay. By NMR, the fold of the IGD mutant proteins is found to be unaffected by the mutation with respect to the wild type, with the exception of small perturbations around the substitution site. While the wild type module is able to stimulate fibroblast migration, the mutant proteins show reduced or negligible bioactivity. The larger fragments show far more potency in stimulating fibroblast migration, with 8Fn1-9Fn1 (one IGD motif) 104 times more potent than the IGD peptide, and the full gelatin binding domain (two IGD motifs) 106 times more potent than the 8Fn1-9Fn1. Potential mechanisms for this enormous enhancement of the IGD potency in different contexts are discussed.
126

Hledání fosfoproteinů účastnících se aktivace pylu tabáku in vitro / Revealing phosphoproteins playing role in tobacco pollen activated in vitro

Fíla, Jan January 2012 (has links)
5 Abstract Tobacco mature pollen rehydrates in vivo on a stigma tissue, and develops into the rapidly-growing pollen tube. This rehydration process is accompanied by the de-repression of stored mRNA transcripts, resulting in the synthesis of novel proteins. Furthermore, such metabolic switch is also likely to be regulated on the level of post-translational modifications of the already-present proteins, namely via phosphorylation, since it was shown to play a significant regulatory role in numerous cellular processes. Since only a minor part of proteins is phosphorylated in a cell at a time, the employment of various enrichment techniques is usually of key importance. In this diploma project, metal oxide/hydroxide affinity chromatography (MOAC) with aluminium hydroxide matrix was applied in order to enrich phosphoproteins from the mature pollen and the 30-minute in vitro activated pollen crude protein extracts. The enriched fraction was separated by both 2D-GE and gel-free liquid chromatography (LC) approaches with subsequent mass spectrometric analyses. Collectively, 139 phosphoprotein candidates were identified. Additionally, to broaden the number of phosphorylation sites identified, titanium dioxide phosphopeptide enrichment of trypsin-digested mature pollen crude extract was performed. Thanks to the...
127

Chromatographic Studies of Solute Interactions with Immobilized Red Blood Cells and Biomembranes

Gottschalk, Ingo January 2002 (has links)
<p>Specific and non-specific interactions of solutes with immobilized biomembranes were studied using chromatographic methods. Liposomes, proteoliposomes and red blood cell (RBC) membrane vesicles were immobilized by a freeze-thawing procedure, whereas whole RBCs were adsorbed in the gel beds using electrostatic interaction, binding to wheat germ agglutinin (WGA) or the streptavidin-biotin interaction. </p><p>Superporous agarose gel with coupled WGA was the most promising matrix for RBC adsorption and allowed frontal chromatographic analyses of the cells for about one week. Dissociation constants for the binding of cytochalasin B and glucose to the glucose transporter GLUT1 were determined under equilibrium conditions. The number of cytochalasin B-binding sites per GLUT1 monomer was calculated and compared to corresponding results measured on free and immobilized membrane vesicles and GLUT1 proteoliposomes. This allowed conclusions about the protein´s binding state <i>in vitro</i> and <i>in vivo</i>. </p><p>Partitioning of drugs into biomembranes was quantified and the system was suggested as a screening method to test for possible intestinal absorption of drug candidates. We also studied how membrane partitioning of drugs is affected by the presence of integral membrane proteins or of charged phospholipids.</p><p>An attempt to combine the theory for specific binding and membrane partitioning of solutes in a single equation is briefly presented. </p>
128

Affinity-, Partition- and Permeability Properties of the Human Red Blood Cell Membrane and Biomembrane Models, with Emphasis on the GLUT1 Glucose Transporter

Lagerquist Hägglund, Christine January 2003 (has links)
<p>The human glucose transporter GLUT1 is abundant in red blood cells, the blood-brain barrier and epithelial cells, where it mediates the transport of the energy metabolite, glucose. In the present work some properties of GLUT1, including affinity binding of both substrates and inhibitors, transport rates as well as permeabilities of aromatic amino acids and drug-membrane interactions were analyzed by chromatographic methods.</p><p>Reconstitution by size-exclusion chromatography on Superdex 75 from a detergent with a low CMC that provides monomeric GLUT1 was examined regarding D-glucose- and CB binding as well as D-glucose transport. Upon steric immobilization in Superdex 200 gel beads, residual detergent could be washed away and dissociation constants in the same range as reported for binding to GLUT1 reconstituted from other detergents were obtained. The transport rate into the GLUT1 proteoliposomes was low, probably due to residual detergent. Binding to GLUT1 at different pH was analyzed and the affinity of glucose and GLUT1 inhibitors was found to decrease with increasing pH (5–8.7). The average number of cytochalasin B-binding sites per GLUT1 monomers was, in most cases, approximately 0.4. GLUT1 may work as a functional monomer, dimer or oligomer. To determine whether GLUT1 was responsible for the transport of the aromatic amino acids tyrosine and tryptophan, uptake values and permeabilities of these amino acids into liposomes and GLUT1 proteoliposomes were compared to the permeabilities of D- and L- glucose in the same systems. Dihydrocytochalasin B was identified to be a new inhibitor of tyrosine and tryptophan transport into red blood cells. Ethanol turned out to inhibit the specific binding between CB and GLUT1 and also to decrease the partitioning of CB and drugs into lipid bilayers. A capacity factor for drug partitioning into membranes that allows comparison between columns with different amount of immobilized lipids was validated, and turned out to be independent of flow rate, amount of lipids and drug concentration in the ranges tested.</p>
129

Affinity-, Partition- and Permeability Properties of the Human Red Blood Cell Membrane and Biomembrane Models, with Emphasis on the GLUT1 Glucose Transporter

Lagerquist Hägglund, Christine January 2003 (has links)
The human glucose transporter GLUT1 is abundant in red blood cells, the blood-brain barrier and epithelial cells, where it mediates the transport of the energy metabolite, glucose. In the present work some properties of GLUT1, including affinity binding of both substrates and inhibitors, transport rates as well as permeabilities of aromatic amino acids and drug-membrane interactions were analyzed by chromatographic methods. Reconstitution by size-exclusion chromatography on Superdex 75 from a detergent with a low CMC that provides monomeric GLUT1 was examined regarding D-glucose- and CB binding as well as D-glucose transport. Upon steric immobilization in Superdex 200 gel beads, residual detergent could be washed away and dissociation constants in the same range as reported for binding to GLUT1 reconstituted from other detergents were obtained. The transport rate into the GLUT1 proteoliposomes was low, probably due to residual detergent. Binding to GLUT1 at different pH was analyzed and the affinity of glucose and GLUT1 inhibitors was found to decrease with increasing pH (5–8.7). The average number of cytochalasin B-binding sites per GLUT1 monomers was, in most cases, approximately 0.4. GLUT1 may work as a functional monomer, dimer or oligomer. To determine whether GLUT1 was responsible for the transport of the aromatic amino acids tyrosine and tryptophan, uptake values and permeabilities of these amino acids into liposomes and GLUT1 proteoliposomes were compared to the permeabilities of D- and L- glucose in the same systems. Dihydrocytochalasin B was identified to be a new inhibitor of tyrosine and tryptophan transport into red blood cells. Ethanol turned out to inhibit the specific binding between CB and GLUT1 and also to decrease the partitioning of CB and drugs into lipid bilayers. A capacity factor for drug partitioning into membranes that allows comparison between columns with different amount of immobilized lipids was validated, and turned out to be independent of flow rate, amount of lipids and drug concentration in the ranges tested.
130

Chromatographic Studies of Solute Interactions with Immobilized Red Blood Cells and Biomembranes

Gottschalk, Ingo January 2002 (has links)
Specific and non-specific interactions of solutes with immobilized biomembranes were studied using chromatographic methods. Liposomes, proteoliposomes and red blood cell (RBC) membrane vesicles were immobilized by a freeze-thawing procedure, whereas whole RBCs were adsorbed in the gel beds using electrostatic interaction, binding to wheat germ agglutinin (WGA) or the streptavidin-biotin interaction. Superporous agarose gel with coupled WGA was the most promising matrix for RBC adsorption and allowed frontal chromatographic analyses of the cells for about one week. Dissociation constants for the binding of cytochalasin B and glucose to the glucose transporter GLUT1 were determined under equilibrium conditions. The number of cytochalasin B-binding sites per GLUT1 monomer was calculated and compared to corresponding results measured on free and immobilized membrane vesicles and GLUT1 proteoliposomes. This allowed conclusions about the protein´s binding state in vitro and in vivo. Partitioning of drugs into biomembranes was quantified and the system was suggested as a screening method to test for possible intestinal absorption of drug candidates. We also studied how membrane partitioning of drugs is affected by the presence of integral membrane proteins or of charged phospholipids. An attempt to combine the theory for specific binding and membrane partitioning of solutes in a single equation is briefly presented.

Page generated in 0.0192 seconds