• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Förutspå golfresultat med hjälp av sentimentanalys på Twitter / Predicting golf scores using sentiment analysis on Twitter

Abdelmassih, Christian, Hultman, Axel January 2016 (has links)
Denna studie undersöker möjligheten att med hjälp av sentimentanalys av golfspelares twitterkonton kunna förutsäga deras kommande resultat. Studien baserades på två dataset: 155 professionella golfares resultat och 112 101 tweets insamlade från två säsonger på PGA­touren. Vår studie kan vara av intresse för till exempel spelbolag, spelare, tränare och fans. Det känslor golfspelarna uttryckt i sina tweets kvantifierades till ett siffervärde med hjälp av den lexikala sentimentsanalysmetoden AFINN. Resultaten av vår studie visar på mycket låg korrelation mellan de insamlade dataseten och att sentimentvärdena innehar en låg grad av prediktiv förmåga. Dessa resultat står i kontrast mot liknande forskning utförd på annan sport. Vår rekommendation för framtida studier är att basera modellen på fler variabler utöver sentimentvärde för att tydligare klargöra hur de känslor golfspelare uttrycker på twitter kan användas för att förutspå deras kommande resultat. / In this study we examine the relationship between the sentiment value of golf players’ tweets and their sports results to evaluate the predictive power of the their twitter accounts. Findings on this topic may be of value to bookmakers, gamblers, coaches and fans of sport. Our study is based on two datasets: PGA­tour golf statistics and 112 101 tweets made by 155 profesional golfers over the course of two seasons. The golf players’ sentiment was quantified using the lexical sentiment analysis method AFINN. In contrast to other research with similiar methods, our findings suggest that there is low correlation betweet the datasets and that the methods used in our study have low predictive power. Our recommendation is that future studies use additional prediction variables besides sentiment score to better evaluate the predictive power of golf players’ tweets.

Page generated in 0.0238 seconds