• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Artificial Intelligence in Everyday Management of Diabetes Type 1 : A Cross Sectional Study of the Role of AI for Individual Patients

Livman, Sofia, Josefsson, Benjamin January 2022 (has links)
Diabetes type 1 is an autoimmune, incurable disease which requires careful monitoring and treatment to not result in life threatening complications. Managing the disease is to a great extent made by the patients themselves, implying the disease needs to be constantly taken into consideration when doing even the most simple and regular everyday tasks and activities.This study aims to examine the use of AI in everyday treatment for patients with diabetes type 1. The study investigated what areas AI is already used in diabetes care management, and where there is room for development. The purpose is to give an indication of what role AI has and potentially can have in making the life for patients with diabetes type 1 easier. The research was conducted by a combined literature review and a cross sectional multiple case-study, with semi-structured interviews with people diagnosed with diabetes type 1. The gathered data were analyzed in relation to the triangle of diabetes management and technology acceptance model 2. The first indicates what factors are of highest relevance to not create dangerous situations for a diabetic, and the second relates to whether users would accept the use of a complex technology. The result suggested wide current and further potential use of AI in creating functionality in treatment and everyday management of the disease. Further, it became evident that technological tools simplify the lives of diabetics but there are several areas where AI could be further implemented in order to improve it even further.
2

ENHANCING POLICY OPTIMIZATION FOR IMPROVED SAMPLE EFFICIENCY AND GENERALIZATION IN DEEP REINFORCEMENT LEARNING

Md Masudur Rahman (19818171) 08 October 2024 (has links)
<p dir="ltr">The field of reinforcement learning has made significant progress in recent years, with deep reinforcement learning (RL) being a major contributor. However, there are still challenges associated with the effective training of RL algorithms, particularly with respect to sample efficiency and generalization. This thesis aims to address these challenges by developing RL algorithms capable of generalizing to unseen environments and adapting to dynamic conditions, thereby expanding the practical applicability of RL in real-world tasks. The first contribution of this thesis is the development of novel policy optimization techniques that enhance the generalization capabilities of RL agents. These techniques include the Thinker method, which employs style transfer to diversify observation trajectories, and Bootstrap Advantage Estimation, which improves policy and value function learning through augmented data. These methods have demonstrated superior performance in standard benchmarks, outperforming existing data augmentation and policy optimization techniques. Additionally, this thesis introduces Robust Policy Optimization, a method that enhances exploration in policy gradient-based RL by perturbing action distributions. This method addresses the limitations of traditional methods, such as entropy collapse and primacy bias, resulting in improved sample efficiency and adaptability in continuous action spaces. The thesis further explores the potential of natural language descriptions as an alternative to image-based state representations in RL. This approach enhances interpretability and generalization in tasks involving complex visual observations by leveraging large language models. Furthermore, this work contributes to the field of semi-autonomous teleoperated robotic surgery by developing systems capable of performing complex surgical tasks remotely, even under challenging conditions such as communication delays and data scarcity. The creation of the DESK dataset supports knowledge transfer across different robotic platforms, further enhancing the capabilities of these systems. Overall, the advancements presented in this thesis represent significant steps toward developing more robust, adaptable, and efficient autonomous agents. These contributions have broad implications for various real-world applications, including autonomous systems, robotics, and safety-critical tasks such as medical surgery.</p>
3

ENHANCING BRAIN TUMOUR DIAGNOSIS WITH AI : A COMPARATIVE ANALYSIS OF RESNET AND YOLO ALGORITHM FOR TUMOUR CLASSIFICATION IN MRI SCANS

Abdulrahman, Somaiya January 2024 (has links)
This study explores the potential of artificial intelligence (AI) in enhancing the diagnosis of brain tumours, specifically through a comparative analysis of two advanced deep learning (DL) models, ResNet50 and YOLOv8, applied to detect and classify brain tumours in MRI images. The study addresses the critical need for rapid and accurate diagnostic tools in the medical field, given the complexity and diversity of brain tumours. The research was motivated by the potential benefits AI could offer to medical diagnostics, particularly in terms of speed and accuracy, which are crucial for effective patient treatment and outcomes. The performance of the ResNet50 and YOLOv8 models was evaluated on a dataset of 7023 MRI images across four tumour types. Key metrics used were accuracy, precision, recall, specificity, F1-score, and processing time, to identify which model performs better in detecting and classifying brain tumours. The findings demonstrates that although both models exhibit high performance, YOLOv8 surpasses ResNet50 in most metrics, particularly showing advantages in speed. The findings highlight the effectiveness advanced DL models in medical image analysis, providing a significant advancement in brain tumour diagnosis. By offering a thorough comparative analysis of two commonly used DL models, aligning with ongoing approaches to integrate AI into practical medical application, and highlighting their potential uses, this study advances the area of medical AI providing insight into the knowledge required for the deployment of future AI diagnostic tools.
4

AI-Enhanced Methods in Autonomous Systems: Large Language Models, DL Techniques, and Optimization Algorithms

de Zarzà i Cubero, Irene 23 January 2024 (has links)
Tesis por compendio / [ES] La proliferación de sistemas autónomos y su creciente integración en la vida humana cotidiana han abierto nuevas fronteras de investigación y desarrollo. Dentro de este ámbito, la presente tesis se adentra en las aplicaciones multifacéticas de los LLMs (Large Language Models), técnicas de DL (Deep Learning) y algoritmos de optimización en el ámbito de estos sistemas autónomos. A partir de los principios de los métodos potenciados por la Inteligencia Artificial (IA), los estudios englobados en este trabajo convergen en la exploración y mejora de distintos sistemas autónomos que van desde sistemas de platooning de camiones en sistemas de comunicaciones Beyond 5G (B5G), Sistemas Multi-Agente (SMA), Vehículos Aéreos No Tripulados (UAV), estimación del área de incendios forestales, hasta la detección temprana de enfermedades como el glaucoma. Un enfoque de investigación clave, perseguido en este trabajo, gira en torno a la implementación innovadora de controladores PID adaptativos en el platooning de vehículos, facilitada a través de la integración de los LLMs. Estos controladores PID, cuando se infunden con capacidades de IA, ofrecen nuevas posibilidades en términos de eficiencia, fiabilidad y seguridad de los sistemas de platooning. Desarrollamos un modelo de DL que emula un controlador PID adaptativo, mostrando así su potencial en las redes y radios habilitadas para IA. Simultáneamente, nuestra exploración se extiende a los sistemas multi-agente, proponiendo una Teoría Coevolutiva Extendida (TCE) que amalgama elementos de la dinámica coevolutiva, el aprendizaje adaptativo y las recomendaciones de estrategias basadas en LLMs. Esto permite una comprensión más matizada y dinámica de las interacciones estratégicas entre agentes heterogéneos en los SMA. Además, nos adentramos en el ámbito de los vehículos aéreos no tripulados (UAVs), proponiendo un sistema para la comprensión de vídeos que crea una log de la historia basada en la descripción semántica de eventos y objetos presentes en una escena capturada por un UAV. El uso de los LLMs aquí permite razonamientos complejos como la predicción de eventos con mínima intervención humana. Además, se aplica una metodología alternativa de DL para la estimación del área afectada durante los incendios forestales. Este enfoque aprovecha una nueva arquitectura llamada TabNet, integrada con Transformers, proporcionando así una estimación precisa y eficiente del área. En el campo de la salud, nuestra investigación esboza una metodología exitosa de detección temprana del glaucoma. Utilizando un enfoque de entrenamiento de tres etapas con EfficientNet en imágenes de retina, logramos una alta precisión en la detección de los primeros signos de esta enfermedad. A través de estas diversas aplicaciones, el foco central sigue siendo la exploración de metodologías avanzadas de IA dentro de los sistemas autónomos. Los estudios dentro de esta tesis buscan demostrar el poder y el potencial de las técnicas potenciadas por la IA para abordar problemas complejos dentro de estos sistemas. Estas investigaciones en profundidad, análisis experimentales y soluciones desarrolladas arrojan luz sobre el potencial transformador de las metodologías de IA en la mejora de la eficiencia, fiabilidad y seguridad de los sistemas autónomos, contribuyendo en última instancia a la futura investigación y desarrollo en este amplio campo. / [CA] La proliferació de sistemes autònoms i la seua creixent integració en la vida humana quotidiana han obert noves fronteres de recerca i desenvolupament. Dins d'aquest àmbit, la present tesi s'endinsa en les aplicacions multifacètiques dels LLMs (Large Language Models), tècniques de DL (Deep Learning) i algoritmes d'optimització en l'àmbit d'aquests sistemes autònoms. A partir dels principis dels mètodes potenciats per la Intel·ligència Artificial (IA), els estudis englobats en aquest treball convergeixen en l'exploració i millora de diferents sistemes autònoms que van des de sistemes de platooning de camions en sistemes de comunicacions Beyond 5G (B5G), Sistemes Multi-Agent (SMA), Vehicles Aeris No Tripulats (UAV), estimació de l'àrea d'incendis forestals, fins a la detecció precoç de malalties com el glaucoma. Un enfocament de recerca clau, perseguit en aquest treball, gira entorn de la implementació innovadora de controladors PID adaptatius en el platooning de vehicles, facilitada a través de la integració dels LLMs. Aquests controladors PID, quan s'infonen amb capacitats d'IA, ofereixen noves possibilitats en termes d'eficiència, fiabilitat i seguretat dels sistemes de platooning. Desenvolupem un model de DL que emula un controlador PID adaptatiu, mostrant així el seu potencial en les xarxes i ràdios habilitades per a IA. Simultàniament, la nostra exploració s'estén als sistemes multi-agent, proposant una Teoria Coevolutiva Estesa (TCE) que amalgama elements de la dinàmica coevolutiva, l'aprenentatge adaptatiu i les recomanacions d'estratègies basades en LLMs. Això permet una comprensió més matissada i dinàmica de les interaccions estratègiques entre agents heterogenis en els SMA. A més, ens endinsem en l'àmbit dels Vehicles Aeris No Tripulats (UAVs), proposant un sistema per a la comprensió de vídeos que crea un registre de la història basat en la descripció semàntica d'esdeveniments i objectes presents en una escena capturada per un UAV. L'ús dels LLMs aquí permet raonaments complexos com la predicció d'esdeveniments amb mínima intervenció humana. A més, s'aplica una metodologia alternativa de DL per a l'estimació de l'àrea afectada durant els incendis forestals. Aquest enfocament aprofita una nova arquitectura anomenada TabNet, integrada amb Transformers, proporcionant així una estimació precisa i eficient de l'àrea. En el camp de la salut, la nostra recerca esbossa una metodologia exitosa de detecció precoç del glaucoma. Utilitzant un enfocament d'entrenament de tres etapes amb EfficientNet en imatges de retina, aconseguim una alta precisió en la detecció dels primers signes d'aquesta malaltia. A través d'aquestes diverses aplicacions, el focus central continua sent l'exploració de metodologies avançades d'IA dins dels sistemes autònoms. Els estudis dins d'aquesta tesi busquen demostrar el poder i el potencial de les tècniques potenciades per la IA per a abordar problemes complexos dins d'aquests sistemes. Aquestes investigacions en profunditat, anàlisis experimentals i solucions desenvolupades llançen llum sobre el potencial transformador de les metodologies d'IA en la millora de l'eficiència, fiabilitat i seguretat dels sistemes autònoms, contribuint en última instància a la futura recerca i desenvolupament en aquest ampli camp. / [EN] The proliferation of autonomous systems, and their increasing integration with day-to-day human life, have opened new frontiers of research and development. Within this scope, the current thesis dives into the multifaceted applications of Large Language Models (LLMs), Deep Learning (DL) techniques, and Optimization Algorithms within the realm of these autonomous systems. Drawing from the principles of AI-enhanced methods, the studies encapsulated within this work converge on the exploration and enhancement of different autonomous systems ranging from B5G Truck Platooning Systems, Multi-Agent Systems (MASs), Unmanned Aerial Vehicles, Forest Fire Area Estimation, to the early detection of diseases like Glaucoma. A key research focus, pursued in this work, revolves around the innovative deployment of adaptive PID controllers in vehicle platooning, facilitated through the integration of LLMs. These PID controllers, when infused with AI capabilities, offer new possibilities in terms of efficiency, reliability, and security of platooning systems. We developed a DL model that emulates an adaptive PID controller, thereby showcasing its potential in AI-enabled radio and networks. Simultaneously, our exploration extends to multi-agent systems, proposing an Extended Coevolutionary (EC) Theory that amalgamates elements of coevolutionary dynamics, adaptive learning, and LLM-based strategy recommendations. This allows for a more nuanced and dynamic understanding of the strategic interactions among heterogeneous agents in MASs. Moreover, we delve into the realm of Unmanned Aerial Vehicles (UAVs), proposing a system for video understanding that employs a language-based world-state history of events and objects present in a scene captured by a UAV. The use of LLMs here enables open-ended reasoning such as event forecasting with minimal human intervention. Furthermore, an alternative DL methodology is applied for the estimation of the affected area during forest fires. This approach leverages a novel architecture called TabNet, integrated with Transformers, thus providing accurate and efficient area estimation. In the field of healthcare, our research outlines a successful early detection methodology for glaucoma. Using a three-stage training approach with EfficientNet on retinal images, we achieved high accuracy in detecting early signs of this disease. Across these diverse applications, the core focus remains: the exploration of advanced AI methodologies within autonomous systems. The studies within this thesis seek to demonstrate the power and potential of AI-enhanced techniques in tackling complex problems within these systems. These in-depth investigations, experimental analyses, and developed solutions shed light on the transformative potential of AI methodologies in improving the efficiency, reliability, and security of autonomous systems, ultimately contributing to future research and development in this expansive field. / De Zarzà I Cubero, I. (2023). AI-Enhanced Methods in Autonomous Systems: Large Language Models, DL Techniques, and Optimization Algorithms [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202201 / Compendio

Page generated in 0.0532 seconds