661 |
Uniform L¹ behavior for the solution of a volterra equation with a parameterNoren, Richard Dennis January 1985 (has links)
The solution u=u(t)=u(t,λ) of
(E) u′(t)+λ∫<sub>0</sub><sup>t</sup>u(t-τ)(d+a(τ))dτ=0, u(0)=1, t ≥ 0, λ ≥ 1
where d ≥ 0, a is nonnegative, nonincreasing, convex and ∞ ≥ a(0+) > a(∞) = 0 is studied. In particular the question asked is: When is
(F) ∫<sub>0</sub><sup>∞</sup><sub>λ ≥ 1</sub><sup>sup</sup>|u′′(t, λ)/λ|dt < ∞?
We obtain two necessary conditions for (F). For (F) to hold, it is necessary that (-lnt)a(τ)∈L¹(0,1) and lim sup <sub>τ→∞</sub> (τθ(τ))²/φ(τ) <∞ where â(τ)=∫<sub>0</sub><sup>∞</sup>e<sup>-iτt</sup>a(t)dt=φ(τ)-iτθ(τ) (φ,θ both real).
We obtain sufficient conditions for (F) to hold which involve φ and θ (See Theorem 7). Then we look for direct conditions on a which imply (F). with the addition assumption -a′ is convex, we prove that (F) holds provided any one of the following hold:
(i) a(0+)<∞,
(ii) 0<lim inf <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds ≤ lim sup <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds < ∞,
(iii) lim <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0,
(iv) lim <sub>τ→∞</sub> ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0, a²(t)/-a′(t) is increasing for small t and a²(t) / -ta′(t)∈L¹(0,∈) for some ∈>0,
(v) lim <sub>τ→∞</sub> ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0 and τ(∫<sub>0</sub><sup>1/τ</sup> a(s)ds)³ / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds ≤ M < ∞ for δ ≤ τ < ∞ (some δ > 0).
Thus (F) holds for wide classes of examples. In particular, (F) holds when d+a(t) = t<sup>-p</sup>, 0 < p < 1; a(t)+d = -lnt (small t); a(t)+d = t⁻¹(-lnt)<sup>-q</sup>, q > 2 (small t). / Ph. D. / incomplete_metadata
|
662 |
Uniserial Representations of Vec(R) with a Single Casimir EigenvalueKuhns, Nehemiah 05 1900 (has links)
In 1980 Feigin and Fuchs classified the length 2 bounded representations of Vec(R), the Lie algebra of polynomial vector fields on the line, as a result of their work on the cohomology of Vec(R). This dissertation is concerned mainly with the uniserial (completely indecomposable) representations of Vec(R) with a single Casimir eigenvalue and weights bounded below. Such representations are composed of irreducible representations with semisimple Euler operator action, bounded weight space dimensions, and weights bounded below. These are known to be the tensor density modules with lowest weight λ, for any non-zero complex number λ, and the trivial module C, with Vec(R) actions π_λ and π_C, respectively. Our proofs are cohomology arguments involving the first cohomology groups of Vec(R) with values in the space of homomorphisms between two irreducible representations. These results classify the finite length uniserial extensions, with a single Casimir eigenvalue, of admissible irreducible Vec(R) representations with weights bounded below. In almost every case there is at most one uniserial representation with a given composition series. However, in the case of an odd length extension with composition series {π_1,π_C,π_1,…,π_C,π_1}, there is a one-parameter family of extensions. We also give preliminary results on uniserial representations of the Virasoro Lie algebra.
|
663 |
Álgebras de Lie semi-simples / Semi-simple Lie algebrasOliveira, Leonardo Gomes 05 March 2009 (has links)
A dissertação tem como tema as álgebras de Lie. Especificamente álgebras de Lie semi-simples e suas propriedades . Para encontramos essas propriedades estudamos os conceitos básicos da teoria das álgebras de Lie e suas representações. Então fizemos a classificação dessas álgebras por diagramas de Dynkin explicitando quais os possíveis diagramas que são associados a uma álgebra de Lie semi-simples. Por fim, demonstramos vários resultados concernentes a essa classificação, dentre esses, o principal resultado demonstrado foi: os diagramas de Dynkin são um invariante completo das álgebras de Lie semi-simples / The dissertation has the theme Lie algebras. Specifically semi-simple Lie algebras and its properties. To find these properties we studied the basic concepts of the theory of Lie algebras and their representations. Then we did the classification by Dynkin diagrams of these algebras and explaining the possible diagrams that are associated with a semi-simple Lie algebra. Finally, we demonstrate several results related to this classification, among these, the main result demonstrated was: the Dynkin diagrams are a complete invariant of semi-simple Lie algebras
|
664 |
Álgebras de Lie semi-simples / Semi-simple Lie algebrasLeonardo Gomes Oliveira 05 March 2009 (has links)
A dissertação tem como tema as álgebras de Lie. Especificamente álgebras de Lie semi-simples e suas propriedades . Para encontramos essas propriedades estudamos os conceitos básicos da teoria das álgebras de Lie e suas representações. Então fizemos a classificação dessas álgebras por diagramas de Dynkin explicitando quais os possíveis diagramas que são associados a uma álgebra de Lie semi-simples. Por fim, demonstramos vários resultados concernentes a essa classificação, dentre esses, o principal resultado demonstrado foi: os diagramas de Dynkin são um invariante completo das álgebras de Lie semi-simples / The dissertation has the theme Lie algebras. Specifically semi-simple Lie algebras and its properties. To find these properties we studied the basic concepts of the theory of Lie algebras and their representations. Then we did the classification by Dynkin diagrams of these algebras and explaining the possible diagrams that are associated with a semi-simple Lie algebra. Finally, we demonstrate several results related to this classification, among these, the main result demonstrated was: the Dynkin diagrams are a complete invariant of semi-simple Lie algebras
|
665 |
Álgebras m-quase inclinadas e m-quase hereditárias / m-quasitilted and m-almost hereditary algebrasPierin, Tanise Carnieri 06 July 2015 (has links)
Apresentamos uma generalização para as classes das álgebras quase inclinadas e quase hereditárias, que chamamos de álgebras m-quase inclinadas e m-quase hereditárias. Para estas últimas, pode-se obter uma trissecção de suas categorias de módulos determinada pelas subcategorias L^m = {X indecomponível; dimensão projetiva de Y é menor ou igual a m, para cada antecessor Y de X} e R = {X indecomponível; dimensão injetiva de Y é menor ou igual a 1, para cada sucessor Y de X}, além de ser possível mostrar que se existe um módulo E_m de forma a obtermos a igualdade de conjuntos {X módulo; Hom(E_m, \\tau X) = 0} = {X módulo; dimensão projetiva de X é menor ou igual a m}, então E_m é soma de somandos de módulos em R e todo caminho de indecomponíveis com início em um somando E de E_m e final em um módulo projetivo pode ser refinado a um caminho de morfismos irredutíveis, que é ainda seccional. Como consequência desse resultado obtém-se que as álgebras m-quase hereditárias são caracterizadas pelo fato de que todos seus módulos projetivos pertencem a L^m. É possível verificar que toda álgebra m-quase inclinada de dimensão global m+1 é m-quase hereditária e, consequentemente, que toda álgebra hereditária por partes de tipo mod H, para alguma álgebra hereditária H, com dimensão global m+1 é m-quase hereditária. Apresentamos ainda um exemplo de uma álgebra 2-quase hereditária que não é 2-quase inclinada, não sendo válida, portanto, a recíproca do resultado acima. Buscamos, dessa forma, estabelecer condições que quando assumidas sobre uma álgebra 2-quase hereditária possam garantir que esta é 2-quase inclinada e, em particular, hereditária por partes. Recorremos, para isso, à aplicação obtida por meio de uma adaptação de resultados de Happel, Reiten e Smalo, que sob certas hipóteses permite concluir que uma álgebra é álgebra de endomorfismos de um objeto inclinante. Como resultado, mostra-se que uma álgebra 2-quase hereditária com certas outras propriedades e que satisfaz as condições (H1), (H2) e (H3) é 2-quase inclinada. / We present a generalization of the classes of quasitilted and almost hereditary algebras, which we call m-quasitilted and m-almost hereditary algebras. For the latter one, we can obtain a trisection of their module categories determined by the following subcategories L^m = {X indecomposable; projective dimension of Y is at most m for each predecessor Y of X} and R = {X indecomposable; injective dimension of Y is at most 1 for each successor Y of X}. Moreover, if there exists a module E_m such that {X; Hom(E_m, \\tau X) = 0} = {X; projective dimension of X is at most m} then E_m is a sum of direct summands of modules in R and any path of indecomposable modules starting in a module E which is a direct summand of E_m and ending in a projective module can be refined to a path of irreducible morphisms, which is also sectional. This result on paths allow us to obtain a characterization for m-almost hereditary algebras in terms of their projective modules. It is also possible to prove that any m-quasitilted algebra with global dimension m+1 is a m-almost hereditary algebra and as a consequence we can obtain that any piecewise hereditary algebra of type mod H, for some hereditary algebra H, and with global dimension m+1 is m-almost hereditary. We present an example of a 2-almost hereditary which is not 2-quasitilted, which entails that the converse of the above mentioned result does not hold true. Thus we seek for conditions which can ensure that a given 2-almost hereditary is 2-quasitilted and, in particular, a piecewise hereditary algebra. For this, we use the correspondence obtained as an adaptation of results of Happel, Reiten and Smalo, which under certain assumptions shows that an algebra is an endomorphism algebra of a tilting object. It is shown that a 2-almost hereditary algebra with some other properties and satisfying (H1), (H2) and (H3) is 2-quasitilted.
|
666 |
Twisting and Gluing : On Topological Field Theories, Sigma Models and Vertex AlgebrasKällén, Johan January 2012 (has links)
This thesis consists of two parts, which can be read separately. In the first part we study aspects of topological field theories. We show how to topologically twist three-dimensional N=2 supersymmetric Chern-Simons theory using a contact structure on the underlying manifold. This gives us a formulation of Chern-Simons theory together with a set of auxiliary fields and an odd symmetry. For Seifert manifolds, we show how to use this odd symmetry to localize the path integral of Chern-Simons theory. The formulation of three-dimensional Chern-Simons theory using a contact structure admits natural generalizations to higher dimensions. We introduce and study these theories. The focus is on the five-dimensional theory, which can be understood as a topologically twisted version of N=1 supersymmetric Yang-Mills theory. When formulated on contact manifolds that are circle fibrations over a symplectic manifold, it localizes to contact instantons. For the theory on the five-sphere, we show that the perturbative part of the partition function is given by a matrix model. In the second part of the thesis, we study supersymmetric sigma models in the Hamiltonian formalism, both in a classical and in a quantum mechanical setup. We argue that the so called Chiral de Rham complex, which is a sheaf of vertex algebras, is a natural framework to understand quantum aspects of supersymmetric sigma models in the Hamiltonian formalism. We show how a class of currents which generate symmetry algebras for the classical sigma model can be defined within the Chiral de Rham complex framework, and for a six-dimensional Calabi-Yau manifold we calculate the equal-time commutators between the currents and show that they generate the Odake algebra.
|
667 |
Cluster structures for 2-Calabi-Yau categories and unipotent groupsScott, J, Reiten, I, Iyama, O, Buan, A.B. 12 1900 (has links)
No description available.
|
668 |
Koszul and generalized Koszul properties for noncommutative graded algebrasPhan, Christopher Lee, 1980- 06 1900 (has links)
xi, 95 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / We investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is an R-algebra under the cup product and is called the Yoneda algebra. (In most cases, we assume R is a field.) A well-known and widely-studied condition on E(A) is the Koszul property. We study a class of deformations of Koszul algebras that arises from the study of equivariant cohomology and algebraic groups and show that under certain circumstances these deformations are Poincaré-Birkhoff-Witt deformations.
Some of our results involve the [Special characters omitted] property, recently introduced by Cassidy and Shelton, which is a generalization of the Koszul property. While a Koszul algebra must be quadratic, a [Special characters omitted] algebra may have its ideal of relations generated in different degrees. We study the structure of the Yoneda algebra corresponding to a monomial [Special characters omitted.] algebra and provide an example of a monomial [Special characters omitted] algebra whose Yoneda algebra is not also [Special characters omitted]. This example illustrates the difficulty of finding a [Special characters omitted] analogue of the classical theory of Koszul duality.
It is well-known that Poincaré-Birkhoff-Witt algebras are Koszul. We find a [Special characters omitted] analogue of this theory. If V is a finite-dimensional vector space with an ordered basis, and A := [Special characters omitted] (V)/I is a connected-graded algebra, we can place a filtration F on A as well as E (A). We show there is a bigraded algebra embedding Λ: gr F E (A) [Special characters omitted] E (gr F A ). If I has a Gröbner basis meeting certain conditions and gr F A is [Special characters omitted], then Λ can be used to show that A is also [Special characters omitted].
This dissertation contains both previously published and co-authored materials. / Committee in charge: Brad Shelton, Chairperson, Mathematics;
Victor Ostrik, Member, Mathematics;
Christopher Phillips, Member, Mathematics;
Sergey Yuzvinsky, Member, Mathematics;
Van Kolpin, Outside Member, Economics
|
669 |
Crossed product C*-algebras of certain non-simple C*-algebras and the tracial quasi-Rokhlin propertyBuck, Julian Michael, 1982- 06 1900 (has links)
viii, 113 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation consists of four principal parts. In the first, we introduce the tracial quasi-Rokhlin property for an automorphism α of a C *-algebra A (which is not assumed to be simple or to contain any projections). We then prove that under suitable assumptions on the algebra A , the associated crossed product C *-algebra C *([Special characters omitted.] , A , α) is simple, and the restriction map between the tracial states of C *([Special characters omitted.] , A , α) and the α-invariant tracial states on A is bijective. In the second part, we introduce a comparison property for minimal dynamical systems (the dynamic comparison property) and demonstrate sufficient conditions on the dynamical system which ensure that it holds. The third part ties these concepts together by demonstrating that given a minimal dynamical system ( X, h ) and a suitable simple C *-algebra A , a large class of automorphisms β of the algebra C ( X, A ) have the tracial quasi-Rokhlin property, with the dynamic comparison property playing a key role. Finally, we study the structure of the crossed product C *-algebra B = C *([Special characters omitted.] , C ( X , A ), β) by introducing a subalgebra B { y } of B , which is shown to be large in a sense that allows properties B { y } of to pass to B . Several conjectures about the deeper structural properties of B { y } and B are stated and discussed. / Committee in charge: Christopher Phillips, Chairperson, Mathematics;
Daniel Dugger, Member, Mathematics;
Huaxin Lin, Member, Mathematics;
Marcin Bownik, Member, Mathematics;
Van Kolpin, Outside Member, Economics
|
670 |
Álgebras bisseriais especiais / Special biserial algebrasCota, Ana Paula da Silva 27 February 2012 (has links)
Made available in DSpace on 2015-03-26T13:45:35Z (GMT). No. of bitstreams: 1
texto completo.pdf: 956809 bytes, checksum: ebf2affe7b281f8af02d3a0fdd8101f6 (MD5)
Previous issue date: 2012-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Special biserial algebras are a class of algebras that appear in many contexts. Butler and Ringel [6] made a description of indecomposable modules and irreducible morphisms of algebras string, a subclass of special biserial algebras. We show that special biserial algebras which are not string, have only one module projective-injective indecomposable for each binomial relation. We are present the Auslander-Reiten sequence in which these modules appear. Then we verify that the remainder of Auslander-Reiten quiver of special biserial algebras is obtained as done by Butler and Ringel [6] for string algebras. We conclude this work by applying the above results for the representations of the algebras of finite cyclic groups and algebras of the Klein group and diedral groups over algebraically closed field of characteristic 2. / Álgebras bisseriais especiais formam uma classe de álgebras que aparecem em diferentes contextos. A aplicabilidade destas álgebras que estamos interessados é no estudo de representações de algumas álgebras de grupo não semissimples sobre corpos algebricamente fechados. Para isso, descrevemos, a menos de isomorfismos, seus módulos indecomponíveis e seus morfismos irredutíveis. Tal descrição é feita através de uma bela apresentação combinatória, dada por Butler e Ringel [6], dos módulos indecomponíveis e dos morfismos irredutíveis de um caso particular de
álgebras bisseriais especiais, as álgebras string. No caso geral, de álgebras bisseriais especiais que não são string, mostramos que são acrescentados apenas um módulo projetivo-injetivo indecomponível para cada relação binomial. Apresentamos a sequência de Auslander-Reiten em que estes módulos aparecem e verificamos que, a menos destas sequências, o restante do quiver de Auslander-Reiten é obtido como feito por Butler e Ringel [6] para álgebras string. Para módulos string, apresentamos ainda uma descrição gráfica de uma base dos espaços de morfismos, de acordo com Crawley-Boevey [7]. Finalizamos o trabalho aplicando os resultados acima para obter as representações das álgebras de grupos cíclicos finitos e para as álgebras do grupo de Klein e dos grupos dihedrais sobre corpos algebricamente fechados de característica 2.
|
Page generated in 0.0308 seconds