• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 39
  • 17
  • 10
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 198
  • 37
  • 35
  • 32
  • 30
  • 28
  • 27
  • 27
  • 26
  • 25
  • 24
  • 23
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Genetic and Environmental Factors that Mediate Survival of Prolonged Oxygen Deprivation in the Nematode Caenorhabditis Elegans

LaRue, Bobby Lee, Jr. 08 1900 (has links)
Ischemic events of even a very short duration are not tolerated Ill in humans. The human cost of ischemia, when looked at as combined cardiovascular disease, dwarfs all other causes of death in the United States. Annually, CVD kills as many people in the US as does cancer, chronic lower respiratory disease, accidents, and diabetes mellitus combined. In 2005 (the latest year for which final statistics are available), CVD was responsible for 864,480 deaths or 35.3 percent of total deaths for the year. In my study, I have used the nematode Caenorhabditis elegans to determine genetic and environmental modulators of oxygen deprivation a key component of ischemia. I have found that animals with mutations in insulin like signaling pathways, neuronal function, electron transport chain components, germline function, and animals that are preconditioned by being raised on a diet of E. coli HT115 bacteria at 25°C have an enhanced ability to survive long-term (>72 hours) anoxia (<.005 kPa O2) at 20°C. The enhanced anoxia survival phenotype partially correlates with increased levels of carbohydrate stores in the nematodes. Suppression of this enhanced anoxia survival phenotype is possible by altering expression of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, the FOXO transcription factor DAF-16, and 5’-AMP kinase.
12

Mechanisms By Which Glucose Lowering Therapies Reduce Obesity And Atherosclerosis

Day, Emily Anne January 2020 (has links)
The incidence of obesity, type 2 diabetes and cardiovascular disease (CVD) is increasing at alarming rates worldwide. Obesity is associated with a chronic nutrient surplus that contributes to chronic low-grade inflammation, ectopic lipid deposition and insulin resistance. Insulin resistance is an important factor contributing to the development of both type 2 diabetes and CVD. Therefore, therapies that can address multiple aspects of cardio-metabolic diseases could have significant clinical utility to reduce morbidity and mortality associated with these conditions. Several distinct glucose lowering therapies have been developed, targeting unique molecular targets. Interestingly, three district glucose lowering therapies, metformin, canagliflozin and salsalate have been shown to potently activate the central energy regulating enzyme, AMP activated protein kinase (AMPK). Activation of AMPK has been shown to be important for regulating fatty acid and cholesterol synthesis, fatty acid oxidation, glucose homeostasis, inflammation and whole-body energy expenditure. Therefore, the objective of this thesis was to examine the effects of metformin, canagliflozin and salsalate, on obesity, atherosclerosis, hepatic lipid metabolism, and macrophage inflammatory signalling and to delineate the mechanism(s) by which these changes occur. In this thesis we show that metformin reduces obesity through a circulating hormone GDF15, and that AMPK is not required for metformin induced GDF15 secretion. Additionally, we show that canagliflozin reduces hepatic cholesterol synthesis and macrophage IL1-1β secretion through mechanisms requiring AMPKβ1. Lastly, we show that salsalate reduces atherosclerosis in a manner dependent on macrophage AMPK β1 and this is associated with reduced macrophage proliferation in vitro and in vivo. These insights into the mechanisms by which these glucose lowering therapies elicit beneficial effects on obesity and atherosclerosis further our understanding of the potential use of these agents for treatments beyond improved glycemic control. Furthermore, this evidence can direct future drug development or drug combinations to more effectively treat multiple aspects of these common chronic diseases that affect over a billion people worldwide. / Thesis / Doctor of Philosophy (Medical Science)
13

The role of amino acid transport in the regulation of mTORC1 by metformin

Forteath, Calum D. January 2017 (has links)
The antihyperglycaemic drug metformin has become the most widely prescribed drug treatment for the management of type 2 diabetes mellitus. Despite being prescribed for over 50 years, the precise molecular mechanisms underlying metformin’s therapeutic effects remain poorly understood. Newly recognised health benefits of metformin, irrespective of diabetes status, have led to proposals of ‘re-purposing’ metformin for treatment of cancer, cardiovascular disease and ageing; conditions regularly associated with impaired regulation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1) but not safely treatable with its inhibitor, rapamycin. Here we report that in the liver, the primary target tissue of metformin, metformin regulates mTORC1 signalling by inhibiting its activation by amino acids in an AMPK-independent manner. Furthermore, we present evidence to suggest that this occurs through a reversible mechanism ‘upstream’ of the amino acid sensor involving inhibition of hepatic uptake of leucine, a potent stimulator of mTORC1 activity. Using gene expression studies, we identified a role for metformin in decoupling uptake of small and large neutral amino acids, such as glutamine and leucine, from a favourable sodium gradient, involving significant reduction in mRNA expression of SNAT2. Consistent with impaired hepatic uptake and removal from the plasma, elevations in plasma concentrations of branched chain amino acids (BCAAs) and glutamine were observed in non-diabetic humans with chronic heart failure (CHF) receiving metformin. Furthermore, elevated plasma concentrations of leucine were significantly associated with improved plasma glucose and fasting insulin resistance index parameter (FIRI). Taken together, these results suggest a role for metformin in controlling mTORC1 via amino acid transport, akin to hepatic protein restriction. This study highlights the potential for ‘re-purposing’ metformin for use as a protein restriction mimetic in treatment of age-related diseases including cardiovascular disease, cancer and diabetes.
14

Mechanotransduction of subcellular AMPK and its role in breast cancer cell migration

Steele, Hannah E. 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The biophysical microenvironment of the tumor site has significant impact on breast cancer progression and metastasis. The importance of altered mechanotransduction in cancerous tissue through the integrin-mediated signaling axis has been documented, yet its role in the regulation of cellular metabolism and the potential link between cellular energy and cell migration remain poorly understood. In this study, we investigated the role of mechanotransduction (via Src and FAK) in AMP-activated protein kinase (AMPK) activation in breast cancer cells in response to interstitial fluid flow. Additionally, we explored the involvement of AMPK in breast cancer cell migration. An in-vitro three-dimensional (3D) cell culture model utilizing collagen-Matrigel matrices was used. Interstitial fluid flow was applied to the 3D cell-matrix construct inside a flow chamber. The sub-cellular signaling activity of Src, FAK, and AMPK was visualized in real-time using fluorescent resonance energy transfer (FRET). We observed that breast cancer cells (MDA-MB-231) are more sensitive to interstitial fluid flow than normal epithelial cells (MCF-10A) in the regulation of FAK and Src. AMPK was activated in the mitochondria of MDA-MB-231 cells by interstitial fluid flow, but not in other subcellular domains (i.e., cytosol, plasma membrane, and nucleus). Subcellular AMPK in MCF-10A cells did not respond to interstitial fluid flow. The inhibition of FAK or Src abolished flow-induced AMPK activation in the mitochondria of MDA-MB-231 cells. We also observed that global AMPK activation reduced MDA-MB-231 cell migration. Interestingly, specific AMPK inhibition in the mitochondria reduced cell migration and blocked interstitial fluid flow-induced cell migration. Our results suggest the linkage of FAK/Src and mitochondria-specific AMPK in mechanotransduction and the dual role of AMPK in breast cancer cell migration depending on its subcellular activation. Therefore, subcellular AMPK activation may play an important and distinct role in cancer invasion and progression.
15

Identification and characterisation of a novel β subunit of AMP-activated protein kinase

Thornton, Elizabeth Claire January 1999 (has links)
No description available.
16

The LKB1-AMPK signalling pathway drives the hypoxic ventilatory response by regulating brainstem nuclei but not the carotid body

Mahmoud, Amira Dia January 2015 (has links)
Ventilatory drive is mediated by respiratory central pattern generators that are located in the brainstem, which are continuously modulated by specialised peripheral and central chemoreceptors to adjust ventilatory patterns according to changes in arterial PO2. These specialised oxygen-sensing chemoreceptors are activated in response to acute reductions in arterial PO2 and ultimately trigger a respiratory response that acts to restore oxygen-levels. However, the molecular mechanism by which mammals are able to regulate their breathing pattern in such a manner during hypoxia remains controversial. Therefore, the studies performed in this thesis aimed to investigate the possibility that this process may be mediated by the liver kinase B 1 (LKB1)/ AMP-activated protein kinase (AMPK) signalling pathway, which is central to cellular adaptations to metabolic stress. This first involved the development of transgenic mice in which Lkb1 or AMPK were deleted. Global knockout of Lkb1 (Sakamoto, 2006) or AMPK activity (Viollet et al., 2009) are embryonic lethal. Thus, the Cre/loxP system was used to develop transgenic mice that had either Lkb1 or both isoforms of the AMPK catalytic α- subunit (α1 and α2) conditionally knocked out in catecholaminergic cells (including therein hypoxia-activated cells of the brainstem and carotid body) by driving Cre expression through a tyrosine-hydroxylase-specific promoter region. The consequent effects on the ventilatory response to hypoxia were then examined using unrestrained whole-body plethysmography. This demonstrated that, in contrast to the hyperventilation evoked in controls, increased ventilation was virtually abolished in the Lkb1 and AMPK α1 and α2 double knockouts during hypoxia. Both knockout mice also exhibited periods of hypoventilation with frequent apnoeas during hypoxia. Additionally, studies on single AMPK α1 and AMPK α2 knockouts identified that the ventilatory dysfunction in AMPK α1 and α2 double knockouts was primarily caused by AMPK α1 deletion. In contrast, the severe ventilatory abnormalities exhibited during hypoxia following the deletion of Lkb1 and AMPK in catecholaminergic cells were mostly reversed upon exposure of mice to hypoxia with hypercapnia. Also, the ventilatory response to hypercapnia alone was without any major effect as a result of Lkb1 deletion or the dual-deletion of AMPK α1 and α2 catalytic subunits in catecholaminergic cells. This thesis therefore demonstrates, for the first time, that the LKB1-AMPK signalling pathway is key to respiratory adaptations during hypoxia, by regulating catecholaminergic oxygen-sensing cells, thus protecting against hypoventilation and apnoeas. The LKB1-AMPK signaling pathway can thereby determine oxygen and energy supply at both a cellular and whole-body level.
17

Cross-regulation between TGFβ/BMP Signalling and the metabolic LKB1 pathway

Raja, Erna January 2012 (has links)
Cell signalling determines physiological responses to many cellular stimuli and environmental changes. The transforming growth factor-beta (TGFβ)/bone morphogenetic protein (BMP) signalling pathways begin by binding of ligand to the heterodimeric receptor complex, followed by activation of Smads that translocate to the nucleus to regulate transcription of genes that further mediate cellular physiology. The TGFβ/BMP pathways are very important for proper tissue development and homeostasis, thus precise spatial and temporal regulation of the signalling pathway is required and achieved by many positive and negative signalling regulators. This thesis work identified the liver kinase B1 (LKB1) pathway as a negative regulator of TGFβ/BMP signalling pathways. In the first paper, we established LKB1 as a negative regulator of TGFβ signalling and TGFβ-induced epithelial to mesenchymal transition (EMT). LKB1 impairs Smad4 binding capacity to DNA leading to suppressed TGFβ-activated gene transcription. The second paper describes further the mechanism of LKB1 negative regulation on BMP signalling, by mediating BMP type I receptor degradation resulting in inhibition of BMP-induced cell differentiation. Downstream of LKB1, salt inducible kinase 1 (SIK1) is a TGFβ target gene and its expression is up-regulated by Smad2/3/4-mediated gene transcription. The third paper elucidates the mechanism of SIK1 transcriptional induction via an enhancer element located 3’ of the gene and SIK1-mediated type I TGFβ receptor degradation, which requires the activity of Smad7 and of the Smurf2 ubiquitin ligase. The fourth manuscript finds sucrose non-fermenting (SNF) 1-like kinase 2 (NUAK2) as another TGFβ target gene and its up-regulation results in modification of the mammalian target of rapamycin (mTOR) pathway that controls protein synthesis. NUAK2 cooperates with LKB1 leading to Raptor phosphorylation and inhibition of mTOR-mediated protein synthesis. Collectively, this thesis work has provided a functional link between two important signalling pathways, the metabolic LKB1 pathway and TGFβ/BMP pathway.
18

The role of LKB1 in the regulation of energetic checkpoints and DNA damage in the lung cancer

Chen, Shin-yi 09 August 2011 (has links)
STK11/LKB1, a serine/threonine protein kinase, is a key upstream kinase of adenine monophosphate-activated protein kinase (AMPK), a necessary kinase in the control of metabolism for maintaining energy homeostasis. Although it has become clear that LKB1 is mutated in a significant number of Peutz¡VJeghers syndrome (PJS) and sporadic cancers, most frequently in adenocarcinoma of the lung, little is known about how the LKB1 signaling regulates the metabolic process and energy production underlying hypoxia and increased radiosensitivity of lung tumor. Here, we employed lung cancer cells as a model system to dissect the functional roles of LKB1 signaling in human lung adenocarcinoma. We found that LKB1 inhibits lung cancer cell migration, transformation and chemo-resistance in vitro after we restored LKB1 expression in LKB1 null A549 and H460 lung cancer cells. We also found that LKB1 prevents UV-induced DNA damage in human lung cancer cell lines by comet assay and activated UV-induced apopotsis by MTT assays. Furthermore, we designed a systems biology approach to provide a comprehensive protein-protein interaction analysis in order to elucidate the LKB1 tumor suppressor network in vivo. We employed Immunoprecipitation-HPLC- Mass Spectrometry (IP-LC-MS) to identify the novel proteins interacting with LKB1 under different cellular stress conditions. We have identified that LKB1 is involved in CFTR synthesis pathway underlying normoxia condition and participates in the glycolysis and gluconeogenesis pathways underlying hypoxia condition. Together, our findings indicated that LKB1 is involved in the regulation of cell migration, energy metabolism and DNA repair in lung cancer cells, and should provides insights to further exploit the concept of deranged cancer bioenergetics and aberrant growth signals to achieve more effective and selective strategies for lung cancer patients.
19

PPARs: Potential Mechanisms Regulating Blood Lipid and Lipoprotein Concentrations at Rest and Following Exercise in the Obese

Greene, Nicholas Perry 2010 August 1900 (has links)
Obesity is associated with greater rates of cardiovascular disease, dyslipidemia and dysfunctional lipid metabolism. Exercise may provide an effective therapeutic tool to ameliorate dyslipidemia. However, how exercise attenuates dyslipidemia with obesity is not fully understood. Additionally, whether acute exercise or exercise training is the primary driver of such changes in this population is unknown. Furthermore, mechanisms mediating these exercise responses are not elucidated. The peroxisome proliferator-activated receptors (PPARs) provide a likely mechanism through enhanced expression of oxidative metabolism and cholesterol transport proteins augmenting fatty acid oxidation and cholesterol transport. Study one describes blood lipid and lipoprotein responses to acute aerobic exercise and exercise training in obese men and women. The primary measured effects include: increased HDL-C in men following 12 wks exercise training, and a shift from HDL3-C to HDL2-C, with concomitantly reduced HDL-C mean density and LDL3-C in women. Acute exercise of 400 kcal duration performed before and after training, yielded a decreased TC: HDL-C ratio in men, which was unaffected by training. Thus, the primary exercise-based treatment for dyslipidemia with obesity appears to be exercise training. In study two, PPARδ and PGC-1α content were significantly enhanced after acute exercise, whereas PPARα and AMPKα content were augmented only after training. These effects were seen with concomitantly increased content of target proteins involved in oxidative and lipoprotein metabolism including lipoprotein lipase, CPT-I, COX-IV, and FAT/CD36. PPARδ expression was correlated with total and LDL-cholesterol concentrations. AMPKα expression was correlated with the concentration of HDL-C and its subfractions, suggesting regulation of blood cholesterols by PPARδ and AMPKα. Study three demonstrates comparative responses to high volume resistance exercise (RE) in lean and obese Zucker rats. RE enhanced PPARδ expression regardless of phenotype, but PGC-1α in obese only. Mitochondrial biogenesis was enhanced in lean animals only, indicating PPARδ and PGC-1α content is disconnected from mitochondrial biogenesis with obesity. These studies enhance our understanding of exercise as a therapeutic tool in treating dyslipidemia and dysregulated lipid metabolism often associated with obesity. They further demonstrate the necessity for exercise training to attenuate dyslipidemia, while illustrating PPAR-mediated augmentations in oxidative and lipoprotein metabolism following exercise with obesity.
20

The effects of [beta]-hydroxy-[beta]-methylbutyrate (HMB) and leucine on cellular signaling pathways controlling protein synthesis and degradation during sedentary and post-exercise recovery in skeletal muscle

Liao, Yi-Hung 12 November 2013 (has links)
Recent research suggests that [beta]-hydroxy-[beta]-methylbutyrate (HMB), a metabolite of leucine (Leu), increases muscle mass and attenuates muscle damage during resistance training. Although Leu acts as a potent stimulator of protein synthesis, HMB, but not Leu, has been reported to be effective in suppressing proteolysis in skeletal muscle. However, mechanisms for the effects of HMB on cell signaling pathways controlling muscle protein turnover during rest and after endurance exercise are still poorly understood. Furthermore, the effects of HMB on cell signaling pathways controlling protein synthesis and degradation under normal in vivo conditions warrant further investigation. For optimal gains in muscle mass, the appropriate type and amount of protein (PRO) is required for positive protein balance to occur in skeletal muscle. Therefore, this dissertation was designed to determine the effect of HMB, PRO and Leu, individually and in combination, on the regulation of cellular signaling pathways controlling muscle protein turnover during sedentary and post-exercise conditions. Study 1 demonstrated that, compared with HMB and PRO alone, the combination of HMB and PRO was more effective in activating the mTOR signaling pathway, which controls protein synthesis, and inhibiting FOXO3A, a major regulator of the ubiquitin-proteasome proteolytic signaling pathway. Study 2 demonstrated that, compared with its individual components, a novel HMB/PRO/Leu supplement better activated protein-synthetic signals and inhibited proteolytic signals in skeletal muscle, and these effects were better sustained. Finally, Study 3 demonstrated that adding Leu to PRO-enriched mixtures after exercise additively activated protein-synthetic signals in a fiber type-specific manner, and adding HMB clearly inhibited proteolytic signaling proteins. Furthermore, provision of an HMB/PRO/Leu supplement after exercise was found to favorably modulate signaling pathways controlling both protein synthesis and degradation. Taken together, the results of these studies suggest that a novel nutrient supplement, composed of HMB, Leu and PRO, additively enhances the intracellular signaling proteins controlling protein synthesis and attenuates signaling proteins controlling proteolysis in skeletal muscle during sedentary and post-exercise recovery. Therefore, such a supplement may be beneficial for both athletic and therapeutic purposes. / text

Page generated in 0.0253 seconds