• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 27
  • 27
  • 27
  • 27
  • 27
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DIGITALLY ASSISTED TECHNIQUES FOR NYQUIST RATE ANALOG-to-DIGITAL CONVERTERS

Majidi, Rabeeh 05 May 2015 (has links)
With the advance of technology and rapid growth of digital systems, low power high speed analog-to-digital converters with great accuracy are in demand. To achieve high effective number of bits Analog-to-Digital Converter(ADC) calibration as a time consuming process is a potential bottleneck for designs. This dissertation presentsa fully digital background calibration algorithm for a 7-bit redundant flash ADC using split structure and look-up table based correction. Redundant comparators are used in the flash ADC design of this work in order to tolerate large offset voltages while minimizing signal input capacitance. The split ADC structure helps by eliminating the unknown input signal from the calibration path. The flash ADC has been designed in 180nm IBM CMOS technology and fabricated through MOSIS. This work was supported by Analog Devices, Wilmington,MA. While much research on ADC design has concentrated on increasing resolution and sample rate, there are many applications (e.g. biomedical devices and sensor networks) that do not require high performance but do require low power energy efficient ADCs. This dissertation also explores on design of a low quiescent current 100kSps Successive Approximation (SAR) ADC that has been used as an error detection ADC for an automotive application in 350nm CD (CMOS-DMOS) technology. This work was supported by ON Semiconductor Corp, East Greenwich,RI.
2

High-Speed Link Modeling: Analog/Digital Equalization and Modulation Techniques

Lee, Keytaek 2012 May 1900 (has links)
High-speed serial input-output (I/O) link has required advanced equalization and modulation techniques to mitigate inter-symbol interference (ISI) caused by multi-Gb/s signaling over band-limited channels. Increasing demands for transceiver power and area complexity has leveraged on-going interest in analog-to-digital converter (ADC) based link, which allows for robust equalization and flexible adaptation to advanced signaling. With diverse options in ISI control techniques, link performance analysis for complicated transceiver architectures is very important. This work presents advanced statistical modeling for ADC-based link, performance comparison of existing modulation and equalization techniques, and proposed hybrid ADC-based receiver that achieves further power saving in digital equalization. Statistical analysis precisely estimates high-speed link margins at given implementation constrains and low target bit-error-rate (BER), typically ranges from 1e-12 to 1e-15, by applying proper statistical bound of noise and distortion. The proposed statistical ADC-based link modeling utilizes bounded probability density function (PDF) of limited quantization distortion (4-6 bits) through digital feed-forward and decision feedback equalizers (FFE-DFE) to improve low target BER estimation. Based on statistical modeling, this work surveys the impact of insufficient equalization, jitter and crosstalk on modulation selection among two and four level pulse amplitude modulation (PAM-2 and PAM-4, respectively) and duobinary, and ADC resolution reduction performance by partial analog equalizer (PAE). While the information of channel loss at effective Nyquist frequency and signaling constellation loss initially guides modulation selection, the statistical analysis results show that PAM-4 best tolerates jitter and crosstalk, and duobinary requires the least equalization complexity. Meanwhile, despite robust digital equalization, high-speed ADC complexity and power consumption is still a critical bottleneck, so that PAE is necessitated to reduce ADC resolution requirement. Statistical analysis presents up to 8-bit resolution is required in 12.5Gb/s data communications at 46dB of channel loss without PAE, while 5-bit ADC is enough with 3-tap FFE PAE. For optimal ADC resolution reduction by PAE, digital equalizer complexity also increases to provide enough margin tolerating significant quantization distortion. The proposed hybrid receiver defines unreliable signal thresholds by statistical analysis and selectively takes additional digital equalization to save potentially increasing dynamic power consumption in digital. Simulation results report that the hybrid receiver saves at least 64% of digital equalization power with 3-tap FFE PAE in 12.5Gb/s data rate and up to 46dB loss channels. Finally, this work shows the use of embedded-DFE ADC in the hybrid receiver is limited by error propagation.
3

Nyquist-Rate Switched-Capacitor Analog-to-Digital Converters

Larsson, Andreas 1978- 14 March 2013 (has links)
The miniaturization and digitization of modern microelectronic systems have made Analog-to-Digital converters (ADC) key building components in many applications. Internet and entertainment technologies demand higher and higher performance from the hardware components in many communication and multimedia systems, but at the same time increased mobility demands less and less power consumption. Many applications, such as instrumentation, video, radar and communications, require very high accuracy and speed and with resolutions up to 16 bits and sampling rates in the 100s of MHz, pipelined ADCs are very suitable for such purposes. Resolutions above 10 bits often require very high power consumption and silicon area if no error correction technique is employed. Calibration relaxes the accuracy requirement of the individual building blocks of the ADC and enables power and area savings. Digital calibration is preferred over analog calibration due to higher robustness and accuracy. Furthermore, the microprocessors that process the digital information from the ADCs have constantly reduced cost and power consumption and improved performance due to technology scaling and innovative microprocessor architectures. The work in this dissertation presents a novel digital background calibration technique for high-speed, high-resolution pipelined ADCs. The technique is implemented in a 14 bit, 100 MS/s pipelined ADC fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.13µm Complementary Metal Oxide Semiconductor (CMOS) digital technology. The prototype ADC achieves better than 11.5 bits linearity at 100 MS/s and achieves a best-in-class figure of merit of 360 fJ/conversion-step. The core ADC has a power consumption of 105 mW and occupies an active area of 1.25 mm^2. The work in this dissertation also presents a low-power, 8-bit algorithmic ADC. This ADC reduces power consumption at system level by minimizing voltage reference generation and ADC input capacitance. This ADC is implemented in International Business Machines Corporation (IBM) 90nm digital CMOS technology and achieves around 7.5 bits linearity at 0.25 MS/s with a power consumption of 300 µW and an active area of 0.27 mm^2.
4

Design and Implementation of a Low-Power SAR-ADC with Flexible Sample-Rate and Internal Calibration

Lindeberg, Johan January 2014 (has links)
The objective of this Master's thesis was to design and implement a low power Analog to Digital Converter (ADC) used for sensor measurements. In the complete measurement unit, in which the ADC is part of, different sensors will be measured. One set of these sensors are three strain gauges with weak output signals which are to be pre-amplified before being converted. The focus of the application for the ADC has been these sensors as they were considered a limiting factor. The report describes theory for the algorithmic and incremental converter as well as a hybrid converter utilizing both of the two converter structures. All converters are based on one operational amplifier and they operate in repetitive fashions to obtain power efficient designs on a small chip area although at low conversion rates. Two converters have been designed and implemented to different degrees of completeness. One is a 13 bit algorithmic (or cyclic) converter which uses a switching scheme to reduce the problem of capacitor mismatch. This converter was implemented at transistor level and evaluated separately and to some extent also with sub-components. The second converter is a hybrid converter using both the operation of the algorithmic and incremental converter to obtain 16 bits of resolution while still having a fairly high sample rate.
5

IMPLEMENTING A TACTICAL TELEMETRY STYSTEM FOR MULTIPLE LAUNCH ROCKET SYSTEM (MLRS) STOCKPILE RELIABILITY TESTING

Cox, Corry 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / The Precision Fires Rocket and Missile Systems (PFRMS) Program Office continually undertakes Stockpile Reliability Testing (SRP) to ensure the validity of the accumulated weapons and increase the she lf life of these weapon systems. MLRS is a legacy weapon system that has been undergoing SRP testing for over 20 years. The PFRMS Program Office has a need for a miniature Tactical Telemetry System that will monitor the fuze performance of the MLRS Rocket during SRP testing. This paper will address a technical approach of how a small Tactical Telemetry System could be built to meet this requirement. The Tactical Telemetry system proposed in this paper will monitor fuze functions, operate across the wide environmental spectrum of the SRP tests, and physically fit in the nose area without altering the overall tactical rocket appearance or operation.
6

Design and Evaluation of an Ultra-Low Power Successive Approximation ADC

Zhang, Dai January 2009 (has links)
<p>Analog-to-digital converters (ADC) targeted for use in medical implant devices serve an important role as the interface between analog signal and digital processing system. Usually, low power consumption is required for a long battery lifetime. In such application which requires low power consumption and moderate speed and resolution, one of the most prevalently used ADC architectures is the successive approximation register (SAR) ADC.This thesis presents a design of an ultra-low power 9-bit SAR ADC in 0.13μm CMOS technology. Based on a literature review of SAR ADC design, the proposed SAR ADC combines a capacitive DAC with S/H circuit, uses a binary-weighted capacitor array for the DAC and utilizes a dynamic latch comparator. Evaluation results show that at a supply voltage of 1.2V and an output rate of 1kS/s, the SAR ADC performs a total power consumption of 103nW and a signal-to-noise-and-distortion ratio of 54.4dB. Proper performance is achieved down to a supply voltage of 0.45V, with a power consumption of 16nW.</p>
7

Design of a Highly Constrained Test System for a 12-bit, 16-channel Wilkinson ADC

Pannell, Zachary William 01 December 2009 (has links)
Outer space is a very harsh environment that can cause electronics to not operate as they were originally intended. Aside from the extreme amount of radiation found in space, temperatures can also change very dramatically in a relatively small time frame. In order to test electronics that will be used in this environment, they first need to be tested on Earth under replicated conditions. Vanderbilt University designed a dewar that allows devices to be tested at these extreme temperatures while being radiated. For this thesis, a test setup that met all of the dewar's constraints was designed that would allow a 12-bit, 16-channel analog-to-digital converter to be tested while inside.
8

Design and Evaluation of an Ultra-Low Power Successive Approximation ADC

Zhang, Dai January 2009 (has links)
Analog-to-digital converters (ADC) targeted for use in medical implant devices serve an important role as the interface between analog signal and digital processing system. Usually, low power consumption is required for a long battery lifetime. In such application which requires low power consumption and moderate speed and resolution, one of the most prevalently used ADC architectures is the successive approximation register (SAR) ADC.This thesis presents a design of an ultra-low power 9-bit SAR ADC in 0.13μm CMOS technology. Based on a literature review of SAR ADC design, the proposed SAR ADC combines a capacitive DAC with S/H circuit, uses a binary-weighted capacitor array for the DAC and utilizes a dynamic latch comparator. Evaluation results show that at a supply voltage of 1.2V and an output rate of 1kS/s, the SAR ADC performs a total power consumption of 103nW and a signal-to-noise-and-distortion ratio of 54.4dB. Proper performance is achieved down to a supply voltage of 0.45V, with a power consumption of 16nW.
9

Study on Zero-Crossing-Based ADCs for Smart Dust Applications

Khan, Shehryar, Awan, Muhammad Asfandyar January 2011 (has links)
The smart dust concept is a fairly recent phenomenon to engineering. It assumes monitoring of a real natural environment in which motes or smart dust machines swarm in collective and coordinate information among themselves and/or to a backend control platform. In analog mixed signal field work on such devices is gaining momentum such that it is conceived to be one of the emerging fields in technology, and work was only possible once the technology for fabrication touched the nanoscale regions. Smart dust network involves remote devices connected in a hive sensing burst type datum signals from the environment and relaying information amongst themselves in an energy efficient manner to coordinate an appropriate response to a detected stimulus. The project presumed a RF based communication strategy for coordination amongst the devices through a wireless medium. That is less susceptible to stringent requirements of LOS and a base band processing system that comprised of an environment sensor, an AFE module, an ADC, a DSP and a DAC. Essentially a 10 bit, 2 Mega Hertz MHz pipelined ADC implemented in a STM 65nm technology. The ADC benefits the smart dust device in allowing it to process data in an energy efficient way and also focusing on reduced complexity as itsdesign feature. While it differs in the other ADC of the system by operating at a higher frequency and assuming a different design philosophy assuming a coherent system sensitive to a clock. The thesis work assumes that various features ofenergy harvesting, regulation and power management present in the smart dustmote would enable the system to contain such a diverse ADC. The ADCs output digital datum would be compatible to the rest of the design modules consisting mainly of DSP sections. The ADC novelty is based on the fact that it removes the necessity of employing a high power consuming OpAmp whose design parameters become more complex as technology scales to the nanoscale era and further down. A systematic, bottom up, test driven approach to design is utilized and various behaviours of the system are captured in Cadence design environment with verilogto layout models and MATLAB and Simulink models.
10

Design of a Highly Constrained Test System for a 12-bit, 16-channel Wilkinson ADC

Pannell, Zachary William 01 December 2009 (has links)
Outer space is a very harsh environment that can cause electronics to not operate as they were originally intended. Aside from the extreme amount of radiation found in space, temperatures can also change very dramatically in a relatively small time frame. In order to test electronics that will be used in this environment, they first need to be tested on Earth under replicated conditions. Vanderbilt University designed a dewar that allows devices to be tested at these extreme temperatures while being radiated. For this thesis, a test setup that met all of the dewar's constraints was designed that would allow a 12-bit, 16-channel analog-to-digital converter to be tested while inside.

Page generated in 0.0754 seconds