• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 24
  • 13
  • 7
  • 6
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 110
  • 110
  • 110
  • 28
  • 25
  • 20
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Évaluation et requêtage de données multisources : une approche guidée par la préférence et la qualité des données : application aux campagnes marketing B2B dans les bases de données de prospection / A novel quality-based, preference-driven data evaluation and brokering : approaches in multisource environments : application to marketing prospection databases

Ben Hassine, Soumaya 10 October 2014 (has links)
Avec l’avènement du traitement distribué et l’utilisation accrue des services web inter et intra organisationnels alimentée par la disponibilité des connexions réseaux à faibles coûts, les données multisources partagées ont de plus en plus envahi les systèmes d’informations. Ceci a induit, dans un premier temps, le changement de leurs architectures du centralisé au distribué en passant par le coopératif et le fédéré ; et dans un deuxième temps, une panoplie de problèmes d’exploitation allant du traitement des incohérences des données doubles à la synchronisation des données distribuées. C’est le cas des bases de prospection marketing où les données sont enrichies par des fichiers provenant de différents fournisseurs.Nous nous intéressons au cadre particulier de construction de fichiers de prospection pour la réalisation de campagnes marketing B-to-B, tâche traitée manuellement par les experts métier. Nous visons alors à modéliser le raisonnement de brokers humains, afin d’optimiser et d’automatiser la sélection du « plan fichier » à partir d’un ensemble de données d’enrichissement multisources. L’optimisation en question s’exprimera en termes de gain (coût, qualité) des données sélectionnées, le coût se limitant à l’unique considération du prix d’utilisation de ces données.Ce mémoire présente une triple contribution quant à la gestion des bases de données multisources. La première contribution concerne l’évaluation rigoureuse de la qualité des données multisources. La deuxième contribution porte sur la modélisation et l’agrégation préférentielle des critères d’évaluation qualité par l’intégrale de Choquet. La troisième contribution concerne BrokerACO, un prototype d’automatisation et d’optimisation du brokering multisources basé sur l’algorithme heuristique d’optimisation par les colonies de fourmis (ACO) et dont la Pareto-optimalité de la solution est assurée par l’utilisation de la fonction d’agrégation des préférences des utilisateurs définie dans la deuxième contribution. L’efficacité du prototype est montrée par l’analyse de campagnes marketing tests effectuées sur des données réelles de prospection. / In Business-to-Business (B-to-B) marketing campaigns, manufacturing “the highest volume of sales at the lowest cost” and achieving the best return on investment (ROI) score is a significant challenge. ROI performance depends on a set of subjective and objective factors such as dialogue strategy, invested budget, marketing technology and organisation, and above all data and, particularly, data quality. However, data issues in marketing databases are overwhelming, leading to insufficient target knowledge that handicaps B-to-B salespersons when interacting with prospects. B-to-B prospection data is indeed mainly structured through a set of independent, heterogeneous, separate and sometimes overlapping files that form a messy multisource prospect selection environment. Data quality thus appears as a crucial issue when dealing with prospection databases. Moreover, beyond data quality, the ROI metric mainly depends on campaigns costs. Given the vagueness of (direct and indirect) cost definition, we limit our focus to price considerations.Price and quality thus define the fundamental constraints data marketers consider when designing a marketing campaign file, as they typically look for the "best-qualified selection at the lowest price". However, this goal is not always reachable and compromises often have to be defined. Compromise must first be modelled and formalized, and then deployed for multisource selection issues. In this thesis, we propose a preference-driven selection approach for multisource environments that aims at: 1) modelling and quantifying decision makers’ preferences, and 2) defining and optimizing a selection routine based on these preferences. Concretely, we first deal with the data marketer’s quality preference modelling by appraising multisource data using robust evaluation criteria (quality dimensions) that are rigorously summarized into a global quality score. Based on this global quality score and data price, we exploit in a second step a preference-based selection algorithm to return "the best qualified records bearing the lowest possible price". An optimisation algorithm, BrokerACO, is finally run to generate the best selection result.
92

Alocação de capacitores e ajuste de tapes para minimização de perdas em sistemas de distribuição de energia elétrica / Capacitor placement and LTC adjustment for loss minimization in electric power distribution systems

Casagrande, Cristiano Gomes 13 August 2010 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-09-21T17:53:15Z No. of bitstreams: 1 cristianogomescasagrande.pdf: 637689 bytes, checksum: 8110c0aa199d98fa3f68855ccb257b82 (MD5) / Approved for entry into archive by Diamantino Mayra (mayra.diamantino@ufjf.edu.br) on 2016-09-26T20:27:35Z (GMT) No. of bitstreams: 1 cristianogomescasagrande.pdf: 637689 bytes, checksum: 8110c0aa199d98fa3f68855ccb257b82 (MD5) / Made available in DSpace on 2016-09-26T20:27:35Z (GMT). No. of bitstreams: 1 cristianogomescasagrande.pdf: 637689 bytes, checksum: 8110c0aa199d98fa3f68855ccb257b82 (MD5) Previous issue date: 2010-08-13 / A necessidade de redução do custo associado à operação dos sistemas de distribuição de energia elétrica tem se tornado cada vez mais imperativa no cenário do setor energético. Uma das principais alternativas para resolver este problema é a minimização de perdas de potência ativa nos alimentadores de distribuição. A fim de reduzir as perdas, algumas práticas têm sido adotadas, como a alocação de capacitores em pontos estratégicos do sistema, bem como o ajuste de tapes de transformadores e reconfiguração de redes de distribuição. A solução de problemas desse tipo envolve complexos algoritmos de otimização não linear inteira mista. Nesse contexto, este trabalho apresenta uma técnica especializada baseada na meta-heurística colônia de formigas para solucionar o problema de minimização de perdas nos sistemas de distribuição de energia elétrica através da alocação ótima de capacitores combinada ao ajuste de tapes, além de considerar restrições de violação de tensão. O algoritmo desenvolvido propõe modificações na estrutura básica do problema, a fim de obter resultados melhores. A metodologia proposta é aplicada a sistemas encontrados na literatura e resultados são comparados com outros métodos. / The reduce the cost associated with the operation of electric power distribution systems has become increasingly imperative in the setting of the energy sector. One of the main alternatives to solve this problem is to minimize power losses in distribution feeders. In order to reduce losses, some practices have been adopted, such as the allocation of capacitors at strategic points in the system as well as LTC adjustment and reconfiguration of distribution networks. The solution of such problems involves complex algorithms for nonlinear mixed integer optimization. Therefore, this paper presents a specialized technique based on meta-heuristic ant colony optimization to solve the problem of minimizing losses in electric power distribution systems through the optimal capacitor placement combined with the LTC adjustment, and consider constraints voltage violation. This algorithm proposes changes to the basic structure of the problem in order to obtain better results. The proposed methodology is applied to systems found in the literature and results are compared with other methods.
93

Ant colony optimization for continuous and mixed-variable domains

Socha, Krzysztof 09 May 2008 (has links)
In this work, we present a way to extend Ant Colony Optimization (ACO), so that it can be applied to both continuous and mixed-variable optimization problems. We demonstrate, first, how ACO may be extended to continuous domains. We describe the algorithm proposed, discuss the different design decisions made, and we position it among other metaheuristics.<p>Following this, we present the results of numerous simulations and testing. We compare the results obtained by the proposed algorithm on typical benchmark problems with those obtained by other methods used for tackling continuous optimization problems in the literature. Finally, we investigate how our algorithm performs on a real-world problem coming from the medical field—we use our algorithm for training neural network used for pattern classification in disease recognition.<p>Following an extensive analysis of the performance of ACO extended to continuous domains, we present how it may be further adapted to handle both continuous and discrete variables simultaneously. We thus introduce the first native mixed-variable version of an ACO algorithm. Then, we analyze and compare the performance of both continuous and mixed-variable<p>ACO algorithms on different benchmark problems from the literature. Through the research performed, we gain some insight into the relationship between the formulation of mixed-variable problems, and the best methods to tackle them. Furthermore, we demonstrate that the performance of ACO on various real-world mixed-variable optimization problems coming from the mechanical engineering field is comparable to the state of the art. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
94

Theoretical and practical aspects of ant colony optimization

Blum, Christian 23 January 2004 (has links)
Combinatorial optimization problems are of high academical as well as practical importance. Many instances of relevant combinatorial optimization problems are, due to their dimensions, intractable for complete methods such as branch and bound. Therefore, approximate algorithms such as metaheuristics received much attention in the past 20 years. Examples of metaheuristics are simulated annealing, tabu search, and evolutionary computation. One of the most recent metaheuristics is ant colony optimization (ACO), which was developed by Prof. M. Dorigo (who is the supervisor of this thesis) and colleagues. This thesis deals with theoretical as well as practical aspects of ant colony optimization.<p><p>* A survey of metaheuristics. Chapter 1 gives an extensive overview on the nowadays most important metaheuristics. This overview points out the importance of two important concepts in metaheuristics: intensification and diversification. <p><p>* The hyper-cube framework. Chapter 2 introduces a new framework for implementing ACO algorithms. This framework brings two main benefits to ACO researchers. First, from the point of view of the theoretician: we prove that Ant System (the first ACO algorithm to be proposed in the literature) in the hyper-cube framework generates solutions whose expected quality monotonically increases with the number of algorithm iterations when applied to unconstrained problems. Second, from the point of view of the experimental researcher, we show through examples that the implementation of ACO algorithms in the hyper-cube framework increases their robustness and makes the handling of the pheromone values easier.<p><p>* Deception. In the first part of Chapter 3 we formally define the notions of first and second order deception in ant colony optimization. Hereby, first order deception corresponds to deception as defined in the field of evolutionary computation and is therefore a bias introduced by the problem (instance) to be solved. Second order deception is an ACO-specific phenomenon. It describes the observation that the quality of the solutions generated by ACO algorithms may decrease over time in certain settings. In the second part of Chapter 3 we propose different ways of avoiding second order deception.<p><p>* ACO for the KCT problem. In Chapter 4 we outline an ACO algorithm for the edge-weighted k-cardinality tree (KCT) problem. This algorithm is implemented in the hyper-cube framework and uses a pheromone model that was determined to be well-working in Chapter 3. Together with the evolutionary computation and the tabu search approaches that we develop in Chapter 4, this ACO algorithm belongs to the current state-of-the-art algorithms for the KCT problem.<p><p>* ACO for the GSS problem. Chapter 5 describes a new ACO algorithm for the group shop scheduling (GSS) problem, which is a general shop scheduling problem that includes among others the well-known job shop scheduling (JSS) and the open shop scheduling (OSS) problems. This ACO algorithm, which is implemented in the hyper-cube framework and which uses a new pheromone model that was experimentally tested in Chapter 3, is currently the best ACO algorithm for the JSS as well as the OSS problem. In particular when applied to OSS problem instances, this algorithm obtains excellent results, improving the best known solution for several OSS benchmark instances. A final contribution of this thesis is the development of a general method for the solution of combinatorial optimization problems which we refer to as Beam-ACO. This method is a hybrid between ACO and a tree search technique known as beam search. We show that Beam-ACO is currently a state-of-the-art method for the application to the existing open shop scheduling (OSS) problem instances.<p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
95

Implementace problému směrování vozidel pomocí algoritmu mravenčích kolonií a částicových rojů / Implementation of the Vehicle Routing Problem Using the Algorithm of Ant Colonies and Particle Swarms

Hanek, Petr January 2019 (has links)
This diploma thesis focuses on meta-heuristic algorithms and their ability to solve difficult optimization problems in polynomial time. The thesis describes different kinds of meta-heuristic algorithms such as genetic algorithm, particle swarm optimization or ant colony optimization. The implemented application was written in Java and contains ant colony optimization for capacitated vehicle routing problem and particle swarm optimization which finds the best possible parameters for ant colonies.
96

Plánování cesty robotu pomocí rojové inteligence / Robot path planning by means of swarm intelligence

Schimitzek, Aleš January 2013 (has links)
This diploma thesis deals with the path planning by swarm intelligence. In the theoretical part it describes the best known methods of swarm intelligence (Ant Colony Optimization, Bee Swarm Optimization, Firefly Swarm Optimization and Particle Swarm Optimization) and their application for path planning. In the practical part particle swarm optimization is selected for the design and implementation of path planning in the C#.
97

Řešení optimalizačních úloh inspirované živými organismy / Solving of Optimisation Tasks Inspired by Living Organisms

Popek, Miloš January 2010 (has links)
We meet with solving of optimization problems every day, when we try to do our tasks in the best way. An Ant Colony Optimization is an algorithm inspired by behavior of ants seeking a source of food. The Ant Colony Optimization is successfuly using on optimization tasks, on which is not possible to use a classical optimization methods. A Genetic Algorithm is inspired by transmision of a genetic information during crossover. The Genetic Algorithm is used for solving optimization tasks like the ACO algorithm. The result of my master's thesis is created simulator for solving choosen optimization tasks by the ACO algorithm and the Genetic Algorithm and a comparison of gained results on implemented tasks.
98

Akcelerace heuristických metod diskrétní optimalizace na GPU / Acceleration of Discrete Optimization Heuristics Using GPU

Pecháček, Václav January 2012 (has links)
Thesis deals with discrete optimization problems. It focusses on faster ways to find good solutions by means of heuristics and parallel processing. Based on ant colony optimization (ACO) algorithm coupled with k-optimization local search approach, it aims at massively parallel computing on graphics processors provided by Nvidia CUDA platform. Well-known travelling salesman problem (TSP) is used as a case study. Solution is based on dividing task into subproblems using tour-based partitioning, parallel processing of distinct parts and their consecutive recombination. Provided parallel code can perform computation more than seventeen times faster than the sequential version.
99

Übertragung von Prinzipien der Ameisenkolonieoptimierung auf eine sich selbst organisierende Produktion

Bielefeld, Malte 12 July 2019 (has links)
Die Bachelorarbeit behandelt die Themen der Selbstorganisation in Produktionssystemen im Kontext von Industrie 4.0. Dabei wird gezeigt, wie man mithilfe von einer Ameisenkolonieoptimierung die Reihenfolgeplanung organisieren kann.:Abbildungsverzeichnis Tabellenverzeichnis Formelverzeichnis 1. Einleitung 1.1. Motivation 1.2. Ziele 1.3. Vorgehensweise 2. Sich selbst organisierende Produktionen 2.1. Begriffserklärung 2.2. Stand der Technik 2.3. Reihenfolgeplanung als ein Problem der Selbstorganisation 2.3.1. Begriffserklärung 2.3.2. Stand der Technik 2.3.3. Umsetzung in einer Selbstorganisation 3. Ameisenkolonieoptimierung 3.1. Begriffserklärung 3.2. Allgemeine Umsetzung 3.3. Konkrete Umsetzungen 3.4. Vor- und Nachteile 3.5. Anwendungsbeispiele 4. Entwicklung einer Ameisenkolonieoptimierung für ein sich selbst organisierendes Produktionssystem 4.1. Analyse des gegebenen sich selbst organisierenden Produktionssystems 4.1.1. Grobanalyse des Systems 4.1.2. Feinanalyse der bisherigen Reihenfolgeplanung 4.2. Entwurf der Reihenfolgeplanung durch Prinzipien der Ameisenkolonieoptimierung 4.3. Implementierung der Prinzipien der Ameisenkolonieoptimierung 5. Empirische Untersuchung der implementierten Ameisenkolonieoptimierung 5.1. Beschreibung der gegebenen Produktionsdaten 5.2. Szenarienuntersuchung zur Funktionsfähigkeit 5.2.1. Schichtwechselszenario 5.2.2. Abnutzungs- und Wartungsszenario 5.2.3. Vergleichsszenario 5.3. Untersuchung hinsichtlich der Laufzeit und des Speicherbedarfs 5.3.1. Laufzeit 5.3.2. Speicherbedarf 6. Zusammenfassung und Ausblick 6.1. Zusammenfassung 6.2. Ausblick Quellenverzeichnis / The bachelor thesis is about self organization in production systems in the context of Industry 4.0. Its about ant colony optimization for scheduling in the production planning.:Abbildungsverzeichnis Tabellenverzeichnis Formelverzeichnis 1. Einleitung 1.1. Motivation 1.2. Ziele 1.3. Vorgehensweise 2. Sich selbst organisierende Produktionen 2.1. Begriffserklärung 2.2. Stand der Technik 2.3. Reihenfolgeplanung als ein Problem der Selbstorganisation 2.3.1. Begriffserklärung 2.3.2. Stand der Technik 2.3.3. Umsetzung in einer Selbstorganisation 3. Ameisenkolonieoptimierung 3.1. Begriffserklärung 3.2. Allgemeine Umsetzung 3.3. Konkrete Umsetzungen 3.4. Vor- und Nachteile 3.5. Anwendungsbeispiele 4. Entwicklung einer Ameisenkolonieoptimierung für ein sich selbst organisierendes Produktionssystem 4.1. Analyse des gegebenen sich selbst organisierenden Produktionssystems 4.1.1. Grobanalyse des Systems 4.1.2. Feinanalyse der bisherigen Reihenfolgeplanung 4.2. Entwurf der Reihenfolgeplanung durch Prinzipien der Ameisenkolonieoptimierung 4.3. Implementierung der Prinzipien der Ameisenkolonieoptimierung 5. Empirische Untersuchung der implementierten Ameisenkolonieoptimierung 5.1. Beschreibung der gegebenen Produktionsdaten 5.2. Szenarienuntersuchung zur Funktionsfähigkeit 5.2.1. Schichtwechselszenario 5.2.2. Abnutzungs- und Wartungsszenario 5.2.3. Vergleichsszenario 5.3. Untersuchung hinsichtlich der Laufzeit und des Speicherbedarfs 5.3.1. Laufzeit 5.3.2. Speicherbedarf 6. Zusammenfassung und Ausblick 6.1. Zusammenfassung 6.2. Ausblick Quellenverzeichnis
100

Experimenty s rojovou inteligencí (swarm intelligence) / Experiments with the Swarm Intelligence

Hula, Tomáš January 2008 (has links)
This work deals with the issue of swarm intelligence as a subdiscipline of artificial intelligence. It describes biological background of the dilemma briefly and presents the principles of searching paths in ant colonies as well. There is also adduced combinatorial optimization and two selected tasks are defined in detail: Travelling Salesman Problem and Quadratic Assignment Problem. The main part of this work consists of description of swarm intelligence methods for solving mentioned problems and evaluation of experiments that were made on these methods. There were tested Ant System, Ant Colony System, Hybrid Ant System and Max-Min Ant System algorithm. Within the work there were also designed and tested my own method Genetic Ant System which enriches the basic Ant System i.a. with development of unit parameters based on genetical principles. The results of described methods were compared together with the ones of classical artificial intelligence within the frame of both solved problems.

Page generated in 0.0337 seconds